題目列表(包括答案和解析)
(本題滿分16分,第1問(wèn)4分,第2問(wèn)6分,第3問(wèn)6分)
已知數(shù)列
中,
且點(diǎn)
在直線
上.
(1)求數(shù)列
的通項(xiàng)公式;
(2)若函數(shù)
求函數(shù)
的最小值;
(3)設(shè)
表示數(shù)列
的前項(xiàng)和。試問(wèn):是否存在關(guān)于
的整式
,使得
對(duì)于一切不小于2的自然數(shù)
恒成立? 若存在,寫出
的解析式,并加以證明;若不存在,試說(shuō)明理由.
(本題滿分20分,其中第1小題4分,第2小題6分,第3小題10分)
已知
是直線
上的
個(gè)不同的點(diǎn)(
,
、
均為非零常數(shù)),其中數(shù)列
為等差數(shù)列.
(1)求證:數(shù)列
是等差數(shù)列;
(2)若點(diǎn)
是直線
上一點(diǎn),且
,求證:
;
(3) 設(shè)
,且當(dāng)
時(shí),恒有
(
和
都是不大于
的正整數(shù), 且
).試探索:在直線
上是否存在這樣的點(diǎn)
,使得
成立?請(qǐng)說(shuō)明你的理由.
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
,若對(duì)任意
,
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
【解析】第一問(wèn)利用
的定義域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是![]()
第二問(wèn)中,若對(duì)任意
不等式
恒成立,問(wèn)題等價(jià)于
只需研究最值即可。
解: (I)
的定義域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)
的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
........4分
(II)若對(duì)任意
不等式
恒成立,
問(wèn)題等價(jià)于
,
.........5分
由(I)可知,在
上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),
故也是最小值點(diǎn),所以
; ............6分
![]()
當(dāng)b<1時(shí),
;
當(dāng)
時(shí),
;
當(dāng)b>2時(shí),
;
............8分
問(wèn)題等價(jià)于![]()
........11分
解得b<1 或
或
即
,所以實(shí)數(shù)b的取值范圍是
| A、[-1,6] | B、[-1,4) | C、[-1,+∞) | D、[1,+∞) |
| π |
| 4 |
| 3 |
| A、1 | B、2 | C、3 | D、4 |
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com