題目列表(包括答案和解析)
已知
是R上的奇函數且在
上單調遞增,令
,
則 ( )
A.
B.
C.
D.![]()
| A. | B. |
| C. | D. |
設函數
.
(I)求
的單調區間;
(II)當0<a<2時,求函數
在區間
上的最小值.
【解析】第一問定義域為真數大于零,得到
.
.
令
,則
,所以
或
,得到結論。
第二問中,
(
).
.
因為0<a<2,所以
,
.令
可得
.
對參數討論的得到最值。
所以函數
在
上為減函數,在
上為增函數.
(I)定義域為
. ………………………1分
.
令
,則
,所以
或
. ……………………3分
因為定義域為
,所以
.
令
,則
,所以
.
因為定義域為
,所以
. ………………………5分
所以函數的單調遞增區間為
,
單調遞減區間為
.
………………………7分
(II)
(
).
.
因為0<a<2,所以
,
.令
可得
.…………9分
所以函數
在
上為減函數,在
上為增函數.
①當
,即
時,
在區間
上,
在
上為減函數,在
上為增函數.
所以
. ………………………10分
②當
,即
時,
在區間
上為減函數.
所以
.
綜上所述,當
時,
;
當
時,![]()
已知函數
.(
)
(1)若
在區間
上單調遞增,求實數
的取值范圍;
(2)若在區間
上,函數
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用
在區間
上單調遞增,則
在區間
上恒成立,然后分離參數法得到
,進而得到范圍;第二問中,在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.然后求解得到。
解:(1)
在區間
上單調遞增,
則
在區間
上恒成立. …………3分
即
,而當
時,
,故
.
…………5分
所以
.
…………6分
(2)令
,定義域為
.
在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.
∵
…………9分
① 若
,令
,得極值點
,
,
當
,即
時,在(
,+∞)上有
,此時
在區間
上是增函數,并且在該區間上有
,不合題意;
當
,即
時,同理可知,
在區間
上遞增,
有
,也不合題意;
…………11分
② 若
,則有
,此時在區間
上恒有
,從而
在區間
上是減函數;
要使
在此區間上恒成立,只須滿足![]()
,
由此求得
的范圍是
. …………13分
綜合①②可知,當
時,函數
的圖象恒在直線
下方.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com