題目列表(包括答案和解析)
已知函數
.(
)
(1)若
在區間
上單調遞增,求實數
的取值范圍;
(2)若在區間
上,函數
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用
在區間
上單調遞增,則
在區間
上恒成立,然后分離參數法得到
,進而得到范圍;第二問中,在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.然后求解得到。
解:(1)
在區間
上單調遞增,
則
在區間
上恒成立. …………3分
即
,而當
時,
,故
.
…………5分
所以
.
…………6分
(2)令
,定義域為
.
在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.
∵
…………9分
① 若
,令
,得極值點
,
,
當
,即
時,在(
,+∞)上有
,此時
在區間
上是增函數,并且在該區間上有
,不合題意;
當
,即
時,同理可知,
在區間
上遞增,
有
,也不合題意;
…………11分
② 若
,則有
,此時在區間
上恒有
,從而
在區間
上是減函數;
要使
在此區間上恒成立,只須滿足![]()
,
由此求得
的范圍是
. …………13分
綜合①②可知,當
時,函數
的圖象恒在直線
下方.
(本小題滿分12分)已知函數![]()
(I)若函數
在區間
上存在極值,求實數a的取值范圍;
(II)當
時,不等式
恒成立,求實數k的取值范圍.
(Ⅲ)求證:解:(1)
,其定義域為
,則
令
,
則
,
當
時,
;當
時,![]()
在(0,1)上單調遞增,在
上單調遞減,
即當
時,函數
取得極大值. (3分)
函數
在區間
上存在極值,
,解得
(4分)
(2)不等式
,即![]()
令![]()
(6分)
令
,則
,
,即
在
上單調遞增, (7分)
,從而
,故
在
上單調遞增, (7分)
(8分)
(3)由(2)知,當
時,
恒成立,即
,
令
,則
, (9分)
![]()
(10分)
以上各式相加得,
![]()
即
,
即
(12分)
。
已知函數
在
處取得極值2.
⑴ 求函數
的解析式;
⑵ 若函數
在區間
上是單調函數,求實數m的取值范圍;
【解析】第一問中利用導數![]()
又f(x)在x=1處取得極值2,所以
,
所以![]()
第二問中,
因為
,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在
上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有
,得![]()
解:⑴ 求導
,又f(x)在x=1處取得極值2,所以
,即
,所以
…………6分
⑵ 因為
,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在
上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有
,得
, …………9分
當f(x)在區間(m,2m+1)上單調遞減,則有
得
…………12分
.綜上所述,當
時,f(x)在(m,2m+1)上單調遞增,當
時,f(x)在(m,2m+1)上單調遞減;則實數m的取值范圍是
或![]()
已知函數
的圖象過坐標原點O,且在點
處的切線的斜率是
.
(Ⅰ)求實數
的值;
(Ⅱ)求
在區間
上的最大值;
(Ⅲ)對任意給定的正實數
,曲線
上是否存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
【解析】第一問當
時,
,則
。
依題意得:
,即
解得
第二問當
時,
,令
得
,結合導數和函數之間的關系得到單調性的判定,得到極值和最值
第三問假設曲線
上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設
,則
,顯然![]()
∵
是以O為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
(Ⅰ)當
時,
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當
時,
,令
得![]()
當
變化時,
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調遞增 |
極大值 |
|
又
,
,
。∴
在
上的最大值為2.
②當
時,
.當
時,
,
最大值為0;
當
時,
在
上單調遞增!
在
最大值為
。
綜上,當
時,即
時,
在區間
上的最大值為2;
當
時,即
時,
在區間
上的最大值為
。
(Ⅲ)假設曲線
上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設
,則
,顯然![]()
∵
是以O為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無解,因此
。此時
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調遞增, ∵
∴
,∴
的取值范圍是
。
∴對于
,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數
,曲線
上存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上
設函數![]()
(1)當
時,求曲線
處的切線方程;
(2)當
時,求
的極大值和極小值;
(3)若函數
在區間
上是增函數,求實數
的取值范圍.
【解析】(1)中,先利用
,表示出點
的斜率值
這樣可以得到切線方程。(2)中,當
,再令
,利用導數的正負確定單調性,進而得到極值。(3)中,利用函數在給定區間遞增,說明了
在區間
導數恒大于等于零,分離參數求解范圍的思想。
解:(1)當
……2分
∴![]()
即
為所求切線方程!4分
(2)當![]()
令
………………6分
∴
遞減,在(3,+
)遞增
∴
的極大值為
…………8分
(3)![]()
①若
上單調遞增!酀M足要求。…10分
②若![]()
∵
恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數
的取值范圍是![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com