題目列表(包括答案和解析)
函數(shù)
是定義在
上的奇函數(shù),且
。
(1)求實(shí)數(shù)a,b,并確定函數(shù)
的解析式;
(2)判斷
在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)寫(xiě)出
的單調(diào)減區(qū)間,并判斷
有無(wú)最大值或最小值?如有,寫(xiě)出最大值或最小值。(本小問(wèn)不需要說(shuō)明理由)
【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運(yùn)用。第一問(wèn)中,利用函數(shù)
是定義在
上的奇函數(shù),且
。
解得
,![]()
(2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。
(3)中,由2知,單調(diào)減區(qū)間為
,并由此得到當(dāng),x=-1時(shí),
,當(dāng)x=1時(shí),![]()
解:(1)
是奇函數(shù),
。
即
,
,
………………2分
,又
,
,
,![]()
(2)任取
,且
,
,………………6分
,![]()
,
,
,
,
在(-1,1)上是增函數(shù)。…………………………………………8分
(3)單調(diào)減區(qū)間為
…………………………………………10分
當(dāng),x=-1時(shí),
,當(dāng)x=1時(shí),
。
已知函數(shù)
.(
)
(1)若
在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(2)若在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問(wèn)中,首先利用
在區(qū)間
上單調(diào)遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進(jìn)而得到范圍;第二問(wèn)中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.然后求解得到。
解:(1)
在區(qū)間
上單調(diào)遞增,
則
在區(qū)間
上恒成立. …………3分
即
,而當(dāng)
時(shí),
,故
.
…………5分
所以
.
…………6分
(2)令
,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.
在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.
∵
…………9分
① 若
,令
,得極值點(diǎn)
,
,
當(dāng)
,即
時(shí),在(
,+∞)上有
,此時(shí)
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當(dāng)
,即
時(shí),同理可知,
在區(qū)間
上遞增,
有
,也不合題意;
…………11分
② 若
,則有
,此時(shí)在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使
在此區(qū)間上恒成立,只須滿足![]()
,
由此求得
的范圍是
. …………13分
綜合①②可知,當(dāng)
時(shí),函數(shù)
的圖象恒在直線
下方.
已知
,(其中
)
⑴求
及
;
⑵試比較
與
的大小,并說(shuō)明理由.
【解析】第一問(wèn)中取
,則
;
…………1分
對(duì)等式兩邊求導(dǎo),得![]()
取
,則
得到結(jié)論
第二問(wèn)中,要比較
與
的大小,即比較:
與
的大小,歸納猜想可得結(jié)論當(dāng)
時(shí),
;
當(dāng)
時(shí),
;
當(dāng)
時(shí),
;
猜想:當(dāng)
時(shí),
運(yùn)用數(shù)學(xué)歸納法證明即可。
解:⑴取
,則
;
…………1分
對(duì)等式兩邊求導(dǎo),得
,
取
,則
。 …………4分
⑵要比較
與
的大小,即比較:
與
的大小,
當(dāng)
時(shí),
;
當(dāng)
時(shí),
;
當(dāng)
時(shí),
;
…………6分
猜想:當(dāng)
時(shí),
,下面用數(shù)學(xué)歸納法證明:
由上述過(guò)程可知,
時(shí)結(jié)論成立,
假設(shè)當(dāng)
時(shí)結(jié)論成立,即
,
當(dāng)
時(shí),![]()
而![]()
∴![]()
即
時(shí)結(jié)論也成立,
∴當(dāng)
時(shí),
成立。
…………11分
綜上得,當(dāng)
時(shí),
;
當(dāng)
時(shí),
;
當(dāng)
時(shí),
已知函數(shù)
,
(Ⅰ)求函數(shù)
的單調(diào)遞減區(qū)間;
(Ⅱ)令函數(shù)
(
),求函數(shù)
的最大值的表達(dá)式
;
【解析】第一問(wèn)中利用令
,
,
∴
,![]()
第二問(wèn)中,
=![]()
=![]()
=
令
,
,則
借助于二次函數(shù)分類討論得到最值。
(Ⅰ)解:令
,
,
∴
,![]()
∴
的單調(diào)遞減區(qū)間為:![]()
…………………4分
(Ⅱ)解:
=![]()
=![]()
=![]()
令
,
,則
……………………4分
對(duì)稱軸![]()
① 當(dāng)
即
時(shí),
=
……………1分
② 當(dāng)
即
時(shí),
=
……………1分
③ 當(dāng)
即
時(shí),
……………1分
綜上:![]()
已知函數(shù)
的最小值為0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若對(duì)任意的
有
≤
成立,求實(shí)數(shù)
的最小值;
(Ⅲ)證明
(
).
【解析】(1)解:
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">
![]()
由
,得![]()
當(dāng)x變化時(shí),
,
的變化情況如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
極小值 |
|
因此,
在
處取得最小值,故由題意
,所以![]()
(2)解:當(dāng)
時(shí),取
,有
,故
時(shí)不合題意.當(dāng)
時(shí),令
,即![]()
![]()
令
,得![]()
①當(dāng)
時(shí),
,
在
上恒成立。因此
在
上單調(diào)遞減.從而對(duì)于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當(dāng)
時(shí),
,對(duì)于
,
,故
在
上單調(diào)遞增.因此當(dāng)取
時(shí),
,即
不成立.
故
不合題意.
綜上,k的最小值為
.
(3)證明:當(dāng)n=1時(shí),不等式左邊=
=右邊,所以不等式成立.
當(dāng)
時(shí),![]()
![]()
![]()
在(2)中取
,得
,
從而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
綜上,
,![]()
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com