題目列表(包括答案和解析)
設函數
.
(I)求
的單調區間;
(II)當0<a<2時,求函數
在區間
上的最小值.
【解析】第一問定義域為真數大于零,得到
.
.
令
,則
,所以
或
,得到結論。
第二問中,
(
).
.
因為0<a<2,所以
,
.令
可得
.
對參數討論的得到最值。
所以函數
在
上為減函數,在
上為增函數.
(I)定義域為
. ………………………1分
.
令
,則
,所以
或
. ……………………3分
因為定義域為
,所以
.
令
,則
,所以
.
因為定義域為
,所以
. ………………………5分
所以函數的單調遞增區間為
,
單調遞減區間為
.
………………………7分
(II)
(
).
.
因為0<a<2,所以
,
.令
可得
.…………9分
所以函數
在
上為減函數,在
上為增函數.
①當
,即
時,
在區間
上,
在
上為減函數,在
上為增函數.
所以
. ………………………10分
②當
,即
時,
在區間
上為減函數.
所以
.
綜上所述,當
時,
;
當
時,![]()
| 1 |
| 3 |
| 1 |
| 2 |
已知![]()
(1)求函數
在
上的最小值
(2)對一切的
恒成立,求實數a的取值范圍
(3)證明對一切
,都有
成立
【解析】第一問中利用
當
時,
在
單調遞減,在
單調遞增
,當![]()
,即
時,
,![]()
![]()
第二問中,
,則
設
,
則
,
單調遞增,
,
,
單調遞減,
,因為對一切
,
恒成立,
第三問中問題等價于證明
,
,
由(1)可知
,
的最小值為
,當且僅當x=
時取得
設
,
,則
,易得![]()
。當且僅當x=1時取得.從而對一切
,都有
成立
解:(1)
當
時,
在
單調遞減,在
單調遞增
,當![]()
,即
時,
,![]()
…………4分
(2)
,則
設
,
則
,
單調遞增,
,
,
單調遞減,
,因為對一切
,
恒成立,
…………9分
(3)問題等價于證明
,
,
由(1)可知
,
的最小值為
,當且僅當x=
時取得
設
,
,則
,易得![]()
。當且僅當x=1時取得.從而對一切
,都有
成立
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com