題目列表(包括答案和解析)
已知數列![]()
(I)若函數
求證:
;
(II)設
。試問:是否存在關于n的整式g(n),使得
對于一切不小于2的自然數n恒成立?若不存在,試說明理由;若存在,寫現g(n)的解析式,并加以證明。
已知數列
滿足
(I)求數列
的通項公式;
(II)若數列
中
,前
項和為
,且
證明:
![]()
【解析】第一問中,利用
,![]()
∴數列{
}是以首項a1+1,公比為2的等比數列,即
![]()
第二問中,
![]()
進一步得到得
即![]()
即
是等差數列.
然后結合公式求解。
解:(I) 解法二、
,![]()
∴數列{
}是以首項a1+1,公比為2的等比數列,即
![]()
(II)
………②
由②可得:
…………③
③-②,得
即
…………④
又由④可得
…………⑤
⑤-④得![]()
即
是等差數列.
![]()
![]()
![]()
![]()
| 2 |
| 3 |
| 3 |
| 4 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com