題目列表(包括答案和解析)
已知函數(shù)
為奇函數(shù),![]()
,當(dāng)![]()
.若
為正的常數(shù),且對任意實(shí)數(shù)
,函數(shù)
只有一個(gè)零點(diǎn),當(dāng)
=0時(shí),
的零點(diǎn)
滿足
,則點(diǎn)(
)形成的平面區(qū)域的面積為( )
(A)
(B)
(C)
(D) ![]()
(1)當(dāng)α=
,且
=(2,
)時(shí),求P點(diǎn)的坐標(biāo);
(2)當(dāng)
·
=0時(shí),求|
|的值;
(3)求|AB|的最小值.
如圖放置的等腰直角三角形ABC薄片(∠ACB=90°,AC=2)沿x軸滾動,設(shè)頂點(diǎn)A(x,y)的軌跡方程是y=f(x),當(dāng)
[0,
]時(shí)y=f(x)= _____________![]()
已知函數(shù)
的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)
處的切線的斜率是
.
(Ⅰ)求實(shí)數(shù)
的值;
(Ⅱ)求
在區(qū)間
上的最大值;
(Ⅲ)對任意給定的正實(shí)數(shù)
,曲線
上是否存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上?說明理由.
【解析】第一問當(dāng)
時(shí),
,則
。
依題意得:
,即
解得
第二問當(dāng)
時(shí),
,令
得
,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問假設(shè)曲線
上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點(diǎn)的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
(Ⅰ)當(dāng)
時(shí),
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當(dāng)
時(shí),
,令
得![]()
當(dāng)
變化時(shí),
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調(diào)遞增 |
極大值 |
|
又
,
,
。∴
在
上的最大值為2.
②當(dāng)
時(shí),
.當(dāng)
時(shí),
,
最大值為0;
當(dāng)
時(shí),
在
上單調(diào)遞增。∴
在
最大值為
。
綜上,當(dāng)
時(shí),即
時(shí),
在區(qū)間
上的最大值為2;
當(dāng)
時(shí),即
時(shí),
在區(qū)間
上的最大值為
。
(Ⅲ)假設(shè)曲線
上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在
軸兩側(cè)。
不妨設(shè)
,則
,顯然![]()
∵
是以O(shè)為直角頂點(diǎn)的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無解,因此
。此時(shí)
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調(diào)遞增, ∵
∴
,∴
的取值范圍是
。
∴對于
,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實(shí)數(shù)
,曲線
上存在兩點(diǎn)P、Q,使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com