題目列表(包括答案和解析)
已知函數f(x)=x3-ax-1.
(1)若f(x)在實數集R上單調遞增,求實數a的取值范圍;
(2)是否存在實數a,使f(x)在(-1,1)上單調遞減?若存在,求出a的取值范圍;若不存在,說明理由;
(3)證明:f(x)=x3-ax-1的圖象不可能總在直線y=a的上方.
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
當
時
單調遞減;當
時
單調遞增,故當
時,
取最小值![]()
于是對一切
恒成立,當且僅當
. ①
令
則![]()
當
時,
單調遞增;當
時,
單調遞減.
故當
時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,
的取值集合為
.
(Ⅱ)由題意知,
令
則
![]()
![]()
令
,則
.當
時,
單調遞減;當
時,
單調遞增.故當
,
即![]()
從而
,
又![]()
![]()
所以![]()
因為函數
在區間
上的圖像是連續不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出
取最小值
對一切x∈R,f(x)
1恒成立轉化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
已知定義在R上的函數
是實數.
(Ⅰ)若函數
在區間
上都是增函數,在區間(-1,3)上是減函數,并且
求函數
的表達式;
(Ⅱ)若
,求證:函數
是單調函數.
已知定義在R上的函數f(x)=ax3+bx2+cx+d,其中a,b,c,d是實數.
(Ⅰ)若函數f(x)在區間(-∞,-1)和(3,+∞)上都是增函數,在區間(-1,3)上是減函數,并且f(0)=-7,
(0)=-18,求函數f(x)的表達式;
(Ⅱ)若a,b,c滿足b2-3ac<0,求證:函數f(x)是單調函數.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com