題目列表(包括答案和解析)
| 4x+m2 |
| 2x |
| m2 |
| 9 |
已知
,(其中
)
⑴求
及
;
⑵試比較
與
的大小,并說明理由.
【解析】第一問中取
,則
;
…………1分
對等式兩邊求導,得![]()
取
,則
得到結論
第二問中,要比較
與
的大小,即比較:
與
的大小,歸納猜想可得結論當
時,
;
當
時,
;
當
時,
;
猜想:當
時,
運用數學歸納法證明即可。
解:⑴取
,則
;
…………1分
對等式兩邊求導,得
,
取
,則
。 …………4分
⑵要比較
與
的大小,即比較:
與
的大小,
當
時,
;
當
時,
;
當
時,
;
…………6分
猜想:當
時,
,下面用數學歸納法證明:
由上述過程可知,
時結論成立,
假設當
時結論成立,即
,
當
時,![]()
而![]()
∴![]()
即
時結論也成立,
∴當
時,
成立。
…………11分
綜上得,當
時,
;
當
時,
;
當
時,
已知正項數列
的前n項和
滿足:
,
(1)求數列
的通項
和前n項和
;
(2)求數列
的前n項和
;
(3)證明:不等式
對任意的
,
都成立.
【解析】第一問中,由于
所以![]()
兩式作差
,然后得到![]()
從而
得到結論
第二問中,
利用裂項求和的思想得到結論。
第三問中,![]()
![]()
又![]()
結合放縮法得到。
解:(1)∵
∴![]()
∴![]()
∴
∴
………2分
又∵正項數列
,∴
∴
又n=1時,![]()
∴
∴數列
是以1為首項,2為公差的等差數列……………3分
∴
…………………4分
∴
…………………5分
(2)
…………………6分
∴![]()
…………………9分
(3)![]()
…………………12分
又![]()
,![]()
∴不等式
對任意的
,
都成立.
已知數列
滿足
,![]()
(1)求證:數列
是等比數列;
(2)求數列
的通項和前n項和
.
【解析】第一問中,利用
,得到
從而得證
第二問中,利用∴
∴
分組求和法得到結論。
解:(1)由題得
………4分
……………………5分
∴數列
是以2為公比,2為首項的等比數列;
……………………6分
(2)∴
……………………8分
∴
……………………9分
∴![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com