題目列表(包括答案和解析)
(本小題滿分12分)二次函數
的圖象經過三點
.![]()
(1)求函數
的解析式(2)求函數
在區間
上的最大值和最小值
(本小題滿分12分)已知等比數列{an}中,
(Ⅰ)求數列{an}的通項公式an;
(Ⅱ)設數列{an}的前n項和為Sn,證明:
;
(本小題滿分12分)已知函數
,其中a為常數.
(Ⅰ)若當
恒成立,求a的取值范圍;
(本小題滿分12分)
甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為
,乙投籃命中的概率為![]()
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規定每投籃一次命中得3分,未命中得-1分,求乙所得分數η的概率分布和數學期望.(本小題滿分12分)已知
是橢圓
的兩個焦點,O為坐標原點,點
在橢圓上,且
,圓O是以
為直徑的圓,直線
與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m
(2)當
時,求弦長|AB|的取值范圍.
一,選擇題:
D C B CC, CA BC B
二、填空題:
(11),
-3
,
(12), 27
(13), .files/image155.gif)
(14),
. (15), -26,14,65
三、解答題:
16, 由已知得
;所以解集:
;
17, (1)由題意
,
=1又a>0,所以a=1.
(2).files/image167.gif)
g(x)=
,當
時,.files/image167.gif)
.files/image169.gif)
=
,無遞增區間;當x<1時,.files/image167.gif)
.files/image169.gif)
=
,它的遞增區間是
.
綜上知:.files/image167.gif)
.files/image169.gif)
的單調遞增區間是
.
18, (1)當0<t≤10時,
是增函數,且f(10)=240
當20<t≤40時,
是減函數,且f(20)=240 所以,講課開始10分鐘,學生的注意力最集中,能持續10分鐘。(3)當0<t≤10時,令
,則t=4 當20<t≤40時,令
,則t≈28.57
則學生注意力在180以上所持續的時間28.57-4=24.57>24
從而教師可以第4分鐘至第28.57分鐘這個時間段內將題講完。
19, (I)
……1分
根據題意,
…………4分
解得
. …………7分
(II)因為
……7分
(i)
時,函數
無最大值,
不合題意,舍去. …………11分
(ii)
時,根據題意得
.files/image206.gif)
解之得
…………13分
為正整數,
=3或4. …………14分
20. (1)當x∈[-1,0)時, f(x)= f(-x)=loga[2-(-x)]=loga(2+x).
當x∈[2k-1,2k),(k∈Z)時,x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].
當x∈[2k,2k+1](k∈Z)時,x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].
故當x∈[2k-1,2k+1](k∈Z)時, f(x)的表達式為