題目列表(包括答案和解析)
已知某產(chǎn)品的廣告費(fèi)用
萬元與銷售額
萬元的統(tǒng)計(jì)數(shù)據(jù)如表所示:
| 0 | 1 | 3 | 4 | |
| 2.2 | 4.3 | 4.8 | 6.7 |
| 0 | 1 | 3 | 4 | |
| 2.2 | 4.3 | 4.8 | 6.7 |
一、選擇題(每小題5分,共60分)
二、填空題(每小題4分,共16分)
13)5 14)2.6 15)48 16)①③④
三、解答題(本題共6小題,滿分共74分)
17、解:(1)因?yàn)?sub>
。
所以1―2班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image188.gif)
……………2分
所以班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image192.gif)
因?yàn)?sub>班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image194.gif)
所以
……………………………6分
(2)
……8分
因?yàn)?/p>
…10分
所以,原式
………………………12分
18、解:(Ⅰ)當(dāng)n=1時(shí),
………3分
(Ⅱ)(方法一)記輸入n時(shí),①中輸出結(jié)果為
,②中輸出結(jié)果為
’則
……………5分
所以
……
……班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image215.gif)
……………8分
(方法二)猜想
……………5分
證明:(1)當(dāng)n=1時(shí),結(jié)論成立
(2)假設(shè)當(dāng)n=k班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image219.gif)
則當(dāng)n=k+1時(shí),
班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image221.gif)
所以當(dāng) n=k+1時(shí),結(jié)論成立
故對(duì)
,都有
成立 ………………8分
因?yàn)?sub>
……………10分
所以班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image229.gif)
班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image231.gif)
……………………………12分
19、解:(方法一)證明:設(shè)BD交AC于點(diǎn)O,連接MO,OF
因?yàn)樗倪呅蜛BCD是正方形
所以AC⊥BD,AO=CO
又因?yàn)榫匦蜛CEF,EM=FM,
所以MO⊥AO
因?yàn)檎叫蜛BCD和矩形ACEF所
在平面垂直
平面ABCD
平面ACEF=AC
所以MO⊥平面ABCD
所以AM⊥BD
在
,
所以BD=班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image241.gif)
所以AO=1,
所以四邊形OAFM是正方形,所以AM⊥OF
因?yàn)?sub>
…………………6分
(Ⅱ)設(shè)AM、OF相交于Q,過A作AR⊥DF于R,連接QR,因?yàn)锳M⊥平面BDF,
所以QR⊥DF,則∠ARQ為二面角A―DF―B的平面角…………………9分
Rt△ADF中,AF=1,AD=
,所以班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image247.gif)
Rt△AQR中,QR班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image249.gif)
所以二面角A―DF―B的余弦值為
………………………12分
(方法二)以C為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系C―xyz,連接BD則A(
,
,0),B(0,
,0)。
D(
,0,0)
F(
,
,1),M(
,
,1)
所以班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image256.gif)
班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image258.gif)
所以班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image260.gif)
班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image262.gif)
所以
所以AM⊥平面BDF…………6分
(Ⅱ)平面ADF的法向量為班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image266.gif)
平面BDF的法向量
………………8分
……………………11分
所以二面角A―DF―B的余弦值為
。 ……………………12分
20、解:設(shè)該人參加科目A考試合格和補(bǔ)考為時(shí)間
,參加科目B考試合格和補(bǔ)考合格為時(shí)間班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image274.gif)
相互獨(dú)立。
(Ⅰ)設(shè)該人不需要補(bǔ)考就可獲得證書為事件C,則C=班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image278.gif)
班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image280.gif)
(Ⅱ)
的可能取值為2,3,4.
則P(班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image284.gif)
P班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image286.gif)
P
…………………8分
所以,隨即變量
的分布列為
班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image282.gif)
2
3
4
P
班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image292.gif)
班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image294.gif)
班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image296.gif)
所以
………………12分
21、解:(Ⅰ)設(shè)所求雙曲線C的方程為
-
=1,班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image304.gif)
由題意得:班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image306.gif)
所以,所求曲線C的方程為
……………3分
(Ⅱ)若弦PQ所在直線斜率K存在,則設(shè)其方程為y=k (x-2)
由班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image312.gif)
設(shè)點(diǎn)P班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image314.gif)
班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image316.gif)
解得班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image318.gif)
此時(shí)點(diǎn)R到y(tǒng)軸的距離班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image320.gif)
而當(dāng)弦PQ所在直線的斜率不存在時(shí),點(diǎn)R到Y(jié)軸的距離為2,
所以,點(diǎn)R到Y(jié)軸距離的最小值為2。 ………………8分
(Ⅲ)因?yàn)橹本L:x=m與以PQ為直徑的圓相切
所以
雙曲線離心率e=
,右準(zhǔn)線方程為班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image326.gif)
所以|PQ|=|PF|+|QF|=2
班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image328.gif)
所以
,所以班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image332.gif)
因?yàn)?sub>
………………12分
22、解:(1)因?yàn)?sub>班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image336.gif)
所以 班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image338.gif)
取BC的中點(diǎn)D,則班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image340.gif)
因?yàn)?sub>班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image342.gif)
所以,點(diǎn)0在BC邊的中線上 ……………………………4分
(Ⅱ)因?yàn)?班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image344.gif)
所以班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image346.gif)
所以班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image348.gif)
所以班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image350.gif)
所以
………………………………5分
因?yàn)?sub>班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image354.gif)
又班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image356.gif)
=班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image358.gif)
所以
……………………8分
因?yàn)?sub>班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image362.gif)
所以
…………………………………10分
(Ⅲ)由題意知
班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image366.gif)
在(0,+∞)上恒成立。
令h(x)=班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image370.gif)
所以班第一次質(zhì)量檢測(cè)--數(shù)學(xué)理.files/image372.gif)
所以h(x)在(0,+∞)內(nèi)為增函數(shù),所以 h(x)>h(0)=1 …………………13分
所以
…………14分
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com