題目列表(包括答案和解析)
已知不等式
,
(1)若對所有的實數
不等式恒成立,求
的取值范圍;
(2)設不等式對于滿足
的一切
的值都成立,求
的取值范圍。
已知不等式
,
(1)若對所有的實數
不等式恒成立,求
的取值范圍;
(2)設不等式對于滿足
的一切
的值都成立,求
的取值范圍。
己知在銳角ΔABC中,角
所對的邊分別為
,且![]()
(I )求角
大小;
(II)當
時,求
的取值范圍.
![]()
20.如圖1,在平面內,
是
的矩形,
是正三角形,將
沿
折起,使
如圖2,
為
的中點,設直線
過點
且垂直于矩形
所在平面,點
是直線
上的一個動點,且與點
位于平面
的同側。
(1)求證:
平面
;
(2)設二面角
的平面角為
,若
,求線段
長的取值范圍。
![]()
![]()
21.已知A,B是橢圓
的左,右頂點,
,過橢圓C的右焦點F的直線交橢圓于點M,N,交直線
于點P,且直線PA,PF,PB的斜率成等差數列,R和Q是橢圓上的兩動點,R和Q的橫坐標之和為2,RQ的中垂線交X軸于T點
(1)求橢圓C的方程;
(2)求三角形MNT的面積的最大值
22. 已知函數
,
(Ⅰ)若
在
上存在最大值與最小值,且其最大值與最小值的和為
,試求
和
的值。
(Ⅱ)若
為奇函數:
(1)是否存在實數
,使得
在
為增函數,
為減函數,若存在,求出
的值,若不存在,請說明理由;
(2)如果當
時,都有
恒成立,試求
的取值范圍.
設
,其導函數
的圖像經過點
,且在
時取得極小值
,
(1)求
的解析式;
(2)若對
都有
恒成立,求實數
的取值范圍。
一、選擇題:(本題每小題5分,共50分)
1
2
3
4
5
6
7
8
9
10
D
B
C
D
D
C
B
A
A
C
二、填空題:(本題每小題4分,共16分)
11.
12.
13.
14.
三、解答題(本大題6小題,共84分。解答應寫出文字說明,證明過程或演算步驟)
15.(本小題滿分14分)
解
得
…………………4分
又

∵
+1>
得B={y|y<
或y>
+1}……………………8分
∵A∩B=φ
∴ 
1

+1
9…………………12分
∴
-2
…………………14分
16.(本小題滿分14分)
解:(1)
,
由
得
又
………6分
(2)因
………8分
又
,
,則
即
…………………10分

…14分
17.(本小題滿分14分)
解:
(…………………3分)
=
(…………………7分)
又
,
,
(1)若
,即
時,
=
=
,(…………10分)
(2)若
,即
時,
所以當
即
時,
=
(…………………13分)
(…………………14分)
18.(本小題滿分14分)
解:(1)令
,
,即
由

∵
,∴
,即數列
是以
為首項、
為公差的等差數列, ∴
…………8分
(2)
化簡得
,即
∵
,又∵
時,
…………12分
∴各項中最大項的值為
…………14分
19.(本小題滿分14分)
解:(1)
,由題意
―――①
又
―――②
聯立得
…………5分
(2)依題意得
即
,對
恒成立,設
,則
解
得
當
……10分
則
又
,所以
;故只須
…………12分
解得
即
的取值范圍是
…………14分
20.(本小題滿分14分)
解:(1)由
,
即函數
的圖象交于不同的兩點A,B; ……4分(2)
已知函數
,
的對稱軸為
,
故
在[2,3]上為增函數,
……………6分
……8分
(3)設方程
……10分
……12分
設
的對稱軸為
上是減函數,
……14分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com