題目列表(包括答案和解析)
(本小題滿分12分)
已知p:方程x2+mx+1=0有兩個(gè)不相等的負(fù)實(shí)根;q:不等式4x2+4(m-2)x+1>0的解集為R,若p或q為真命題,p且q為假命題,求m的取值范圍.
(本小題滿分12分)已知⊙C:x2+y2-2x-2y+1=0,直線l與⊙C相切且分別交x軸、y軸正向于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),且
=a,
=b(a>2,b>2).
(Ⅰ)求線段AB中點(diǎn)的軌跡方程.
(Ⅱ)求△ABC面積的極小值.
(本小題滿分12分)
已知p:方程x2+mx+1=0有兩個(gè)不等的負(fù)實(shí)根,q:方程4x2+4(m-2)x+1=0無實(shí)根。若p或q 為真,p且q為假。求實(shí)數(shù)m的取值范圍。
(本小題滿分12分)
已知函數(shù)f(x)=x-ln(x+a).(a是常數(shù))
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II) 當(dāng)
在x=1處取得極值時(shí),若關(guān)于x的方程f(x)+2x=x2+b在[,2]上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(III)求證:當(dāng)
時(shí)
.
(本小題滿分12分)
已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若關(guān)于x的方程f(x)=-
x+b在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(Ⅲ)證明:對(duì)任意的正整數(shù)n,不等式ln
<
都成立.
一、選擇題(每小題5分,共60分)
1-12BDCBC CCDBA AC
二、填空題(每題4分,共16分)
13、
14、
15、1 16、15
三、解答題(共74分)
17、(本小題滿分12分)
(1)
函數(shù)
的最小正周期是
當(dāng)
時(shí),即
時(shí),函數(shù)有最大值1。
(2)由
,得
當(dāng)
時(shí),取
得,函數(shù)
的單調(diào)遞減區(qū)間是
(3)

18、(本小題滿分12分)
(1)由題意知:
且
,∴
=1
∵
①,∴當(dāng) n≥2時(shí),
②
①-②得:
∴
∵
>0,∴
,(n≥2且
)
∴
是以
=1為首項(xiàng),d=1為公差的等差數(shù)列
∴
=n
(2)
∴
是以
為首項(xiàng),
為公比的等比數(shù)列
∴
,∴
,
∴
①
∴
②
①-②得
∴
19、(本小題滿分12分)
(1)當(dāng)
時(shí),
在
上是增函數(shù)
∴
在
上是增函數(shù)
∴當(dāng)
時(shí),
(2)
在
上恒成立
∴
在
上恒成立
∴
在
上恒成立
在
上是減函數(shù),
∴當(dāng)
時(shí),
∴
,
∴所求實(shí)數(shù)a的取值范圍為
20、(本小題滿分12分)
由

此時(shí)
∴

又
,∴
,∴
∴實(shí)數(shù)a不存在
21、(本小題滿分12分)
(1)若方程表示圓,則
,∴
(2)設(shè)M、N的坐標(biāo)分別為
、
由
,得
又
,∴
,∴
①
由
,得
∴
代入①得
,
∴
(3)設(shè)MN為直徑的圓的方程為
,
即
又
∴所求圓的方程為
22、(本小題滿分14分)
(1)當(dāng)
時(shí),
設(shè)x為其不動(dòng)點(diǎn),則
,即
∴
或2,即
的不動(dòng)點(diǎn)是-1,2
(2)由
得
由題意知,此方程恒有兩個(gè)相異的實(shí)根
∴
對(duì)任意的
恒成立
∴
,∴
(3)設(shè)
,則直線AB的斜率
,∴
由(2)知AB中點(diǎn)M的坐標(biāo)為
又∵M(jìn)在線段AB的垂直平分線
上,∴
∴
(當(dāng)且僅當(dāng)
時(shí)取等號(hào))
∴實(shí)數(shù)b的取值范圍為
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com