題目列表(包括答案和解析)
在四棱錐
中,
平面
,底面
為矩形,
.
(Ⅰ)當
時,求證:
;
(Ⅱ)若
邊上有且只有一個點
,使得
,求此時二面角
的余弦值.
![]()
【解析】第一位女利用線面垂直的判定定理和性質定理得到。當a=1時,底面ABCD為正方形,![]()
![]()
又因為
,
………………2分
又
,得證。
第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設BQ=m,則Q(1,m,0)(0《m《a》
要使
,只要![]()
所以
,即
………6分
由此可知
時,存在點Q使得![]()
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得![]()
由此知道a=2, 設平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
解:(Ⅰ)當
時,底面ABCD為正方形,![]()
![]()
又因為
,
又![]()
………………3分
(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,
![]()
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設BQ=m,則Q(1,m,0)(0《m《a》要使
,只要![]()
所以
,即
………6分
由此可知
時,存在點Q使得![]()
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得
由此知道a=2,
設平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
(本小題滿分14分)已知函數f(x)=aex,g(x)= lna-ln(x +1)(其中a為常數,e為自然對數底),函數y =f(x)在A(0,a)處的切線與y =g(x)在B(0,lna)處的切線互相垂直.
(Ⅰ) 求f(x) ,g(x)的解析式;
(Ⅱ) 求證:對任意n ÎN*, f(n)+g(n)>2n;
(Ⅲ) 設y =g(x-1)的圖象為C1,h(x)=-x2+bx的圖象為C2,若C1與C2相交于P、Q,過PQ中點垂直于x軸的直線分別交C1、C2于M、N,問是否存在實數b,使得C1在M處的切線與C2在N處的切線平行?說明你的理由.
(本小題滿分14分)已知函數f(x)=aex,g(x)= lna-ln(x +1)(其中a為常數,e為自然對數底),函數y =f(x)在A(0,a)處的切線與y =g(x)在B(0,lna)處的切線互相垂直.
(Ⅰ) 求f(x) ,g(x)的解析式;
(Ⅱ) 求證:對任意n ÎN*, f(n)+g(n)>2n;
(Ⅲ) 設y =g(x-1)的圖象為C1,h(x)=-x2+bx的圖象為C2,若C1與C2相交于P、Q,過PQ中點垂直于x軸的直線分別交C1、C2于M、N,問是否存在實數b,使得C1在M處的切線與C2在N處的切線平行?說明你的理由.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com