題目列表(包括答案和解析)
已知
R,函數
.
⑴若函數
沒有零點,求實數
的取值范圍;
⑵若函數
存在極大值,并記為
,求
的表達式;
⑶當
時,求證:
.
【解析】(1)求導研究函數f(x)的最值,說明函數f(x)的最大值<0,或f(x)的最小值>0.
(2)根據第(1)問的求解過程,直接得到g(m).
(3)構造函數
,證明
即可,然后利用導數求g(x)的最小值.
已知函數
(
為實數).
(Ⅰ)當
時,求
的最小值;
(Ⅱ)若
在
上是單調函數,求
的取值范圍.
【解析】第一問中由題意可知:
. ∵
∴
∴![]()
.
當
時,
;
當
時,
. 故
.
第二問![]()
.
當
時,
,在
上有
,
遞增,符合題意;
令
,則![]()
,∴
或
在
上恒成立.轉化后解決最值即可。
解:(Ⅰ) 由題意可知:
. ∵
∴
∴![]()
.
當
時,
;
當
時,
. 故
.
(Ⅱ) ![]()
.
當
時,
,在
上有
,
遞增,符合題意;
令
,則![]()
,∴
或
在
上恒成立.∵二次函數
的對稱軸為
,且![]()
∴
或![]()
或![]()
或![]()
或
. 綜上![]()
已知函數
在
處取得極值2.
⑴ 求函數
的解析式;
⑵ 若函數
在區間
上是單調函數,求實數m的取值范圍;
【解析】第一問中利用導數![]()
又f(x)在x=1處取得極值2,所以
,
所以![]()
第二問中,
因為
,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在
上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有
,得![]()
解:⑴ 求導
,又f(x)在x=1處取得極值2,所以
,即
,所以
…………6分
⑵ 因為
,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在
上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有
,得
, …………9分
當f(x)在區間(m,2m+1)上單調遞減,則有
得
…………12分
.綜上所述,當
時,f(x)在(m,2m+1)上單調遞增,當
時,f(x)在(m,2m+1)上單調遞減;則實數m的取值范圍是
或![]()
已知函數
其中
為自然對數的底數,
.(Ⅰ)設
,求函數
的最值;(Ⅱ)若對于任意的
,都有
成立,求
的取值范圍.
【解析】第一問中,當
時,
,
.結合表格和導數的知識判定單調性和極值,進而得到最值。
第二問中,∵
,
,
∴原不等式等價于:
,
即
, 亦即![]()
分離參數的思想求解參數的范圍
解:(Ⅰ)當
時,
,
.
當
在
上變化時,
,
的變化情況如下表:
|
|
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
|
1/e |
∴
時,
,
.
(Ⅱ)∵
,
,
∴原不等式等價于:
,
即
, 亦即
.
∴對于任意的
,原不等式恒成立,等價于
對
恒成立,
∵對于任意的
時,
(當且僅當
時取等號).
∴只需
,即
,解之得
或
.
因此,
的取值范圍是![]()
已知拋物線
,過M(a,0)且斜率為1的直線
與拋物線交于不同的兩點A、B,
。
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點N,求△NAB面積的最大值。
分析:這是一道直線與圓錐曲線位置關系的問題,對于(1),可以設法得到關于a的不等式,通過解不等式求出a的范圍,即“求范圍,找不等式”。或者將a表示為另一個變量的函數,利用求函數的值域求出a的范圍。對于(2)首先要把△NAB的面積表示為一個變量的函數,然后再求它的最大值。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com