題目列表(包括答案和解析)
A.y=x+
(x≠0)≥2,故y=x+
的最小值為2
B.y=sinx+
〔x∈(0,
)〕≥
,故y=sinx+
的最小值為![]()
C.y=
+
≥2,故y=
+
的最小值為2
D.y=lgx+
(x>0)≥2,故y=lgx+
的最小值為2
A.∵y=x+
(x≠0)≥2,故y=x+
的最小值為2
B.∵y=sinx+
〔x∈(0,
)〕≥2
,故y=sinx+
的最小值為2![]()
C.∵y=
+
≥2,故y=
+
的最小值為2
D.y=lgx+
(x>0)≥2,故y=lgx+
的最小值為2
已知遞增等差數(shù)列
滿足:
,且
成等比數(shù)列.
(1)求數(shù)列
的通項公式
;
(2)若不等式
對任意
恒成立,試猜想出實數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設數(shù)列
公差為
,
由題意可知
,即
,解得d,得到通項公式,第二問中,不等式等價于
,利用當
時,
;當
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設數(shù)列
公差為
,由題意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等價于
,
當
時,
;當
時,
;
而
,所以猜想,
的最小值為
. …………8分
下證不等式
對任意
恒成立.
方法一:數(shù)學歸納法.
當
時,
,成立.
假設當
時,不等式
成立,
當
時,
,
…………10分
只要證
,只要證
,
只要證
,只要證
,
只要證
,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調(diào)性證明.
要證 ![]()
只要證
,
設數(shù)列
的通項公式
, …………10分
, …………12分
所以對
,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而
,所以
恒成立,
故
的最小值為
.
A.15 B.12 C.9 D.6
設x,y為正數(shù),則
的最小值為
A.15 B.12 C.9 D.6
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com