題目列表(包括答案和解析)
| 5 |
| 3 |
| 5 |
| 9 |
| 5 |
| 3 |
| 5 |
| 9 |
已知函數
.
(1)求
在區間
上的最大值;
(2)若函數
在區間
上存在遞減區間,求實數m的取值范圍.
【解析】本試題主要考查了導數在研究函數中的運用,求解函數的最值。第一問中,利用導數求解函數的最值,首先求解導數
,然后利用極值和端點值比較大小,得到結論。第二問中,我們利用函數在
上存在遞減區間,即
在
上有解,即
,即可,可得到。
解:(1)
,
令
,解得
……………3分
![]()
,
在
上為增函數,在
上為減函數,
.
…………6分
(2)![]()
在
上存在遞減區間,
在
上有解,……9分
![]()
在
上有解,
![]()
,
所以,實數
的取值范圍為
已知函數
和
的定義域分別是集合A、B,
(1)求集合A,B;
(2)求集合
,
.
【解析】本試題考查了集合的基本運算。第一問中,利用
由
解得
由
解得![]()
第二問中,由(1)得
![]()
解:(1)由
解得
……………………3分
由
解得
……………………6分
(2)由(1)得
……………………9分
![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com