題目列表(包括答案和解析)
已知函數![]()
;
(1)若函數
在其定義域內為單調遞增函數,求實數
的取值范圍。
(2)若函數
,若在[1,e]上至少存在一個x的值使
成立,求實數
的取值范圍。
【解析】第一問中,利用導數
,因為
在其定義域內的單調遞增函數,所以
內滿足
恒成立,得到結論第二問中,在[1,e]上至少存在一個x的值使
成立,等價于不等式
在[1,e]上有解,轉換為不等式有解來解答即可。
解:(1)
,
因為
在其定義域內的單調遞增函數,
所以
內滿足
恒成立,即
恒成立,
亦即
,
即可 又![]()
當且僅當
,即x=1時取等號,
在其定義域內為單調增函數的實數k的取值范圍是
.
(2)在[1,e]上至少存在一個x的值使
成立,等價于不等式
在[1,e]上有解,設![]()
上的增函數,
依題意需![]()
實數k的取值范圍是![]()
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
當
時
單調遞減;當
時
單調遞增,故當
時,
取最小值![]()
于是對一切
恒成立,當且僅當
. ①
令
則![]()
當
時,
單調遞增;當
時,
單調遞減.
故當
時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,
的取值集合為
.
(Ⅱ)由題意知,
令
則
![]()
![]()
令
,則
.當
時,
單調遞減;當
時,
單調遞增.故當
,
即![]()
從而
,
又![]()
![]()
所以![]()
因為函數
在區間
上的圖像是連續不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出
取最小值
對一切x∈R,f(x)
1恒成立轉化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
已知數列
的前
項和為
,且
(
N*),其中
.
(Ⅰ) 求
的通項公式;
(Ⅱ) 設
(
N*).
①證明:
;
② 求證:
.
【解析】本試題主要考查了數列的通項公式的求解和運用。運用
關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以
利用放縮法,從此得到結論。
解:(Ⅰ)當
時,由
得
. ……2分
若存在
由
得
,
從而有
,與
矛盾,所以
.
從而由
得
得
. ……6分
(Ⅱ)①證明:![]()
證法一:∵
∴![]()
∴
∴
.…………10分
證法二:
,下同證法一.
……10分
證法三:(利用對偶式)設
,
,
則
.又
,也即
,所以
,也即
,又因為
,所以
.即
………10分
證法四:(數學歸納法)①當
時,
,命題成立;
②假設
時,命題成立,即
,
則當
時,![]()
![]()
即![]()
即![]()
故當
時,命題成立.
綜上可知,對一切非零自然數
,不等式②成立. ………………10分
②由于
,
所以
,
從而
.
也即![]()
已知函數
,
(1)求函數
的定義域;
(2)求函數
在區間
上的最小值;
(3)已知
,命題p:關于x的不等式
對函數
的定義域上的任意
恒成立;命題q:指數函數
是增函數.若“p或q”為真,“p且q”為假,求實數m的取值范圍.
【解析】第一問中,利用由
即![]()
![]()
第二問中,
,
得:
![]()
,
![]()
第三問中,由在函數
的定義域上
的任意
,
,當且僅當
時等號成立。當命題p為真時,
;而命題q為真時:指數函數
.因為“p或q”為真,“p且q”為假,所以
當命題p為真,命題q為假時;當命題p為假,命題q為真時分為兩種情況討論即可 。
解:(1)由
即![]()
![]()
(2)
,
得:
![]()
,
![]()
(3)由在函數
的定義域上
的任意
,
,當且僅當
時等號成立。當命題p為真時,
;而命題q為真時:指數函數
.因為“p或q”為真,“p且q”為假,所以
當命題p為真,命題q為假時,![]()
當命題p為假,命題q為真時,
,
所以![]()
已知函數
的最小值為0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若對任意的
有
≤
成立,求實數
的最小值;
(Ⅲ)證明
(
).
【解析】(1)解:
的定義域為![]()
![]()
由
,得![]()
當x變化時,
,
的變化情況如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
極小值 |
|
因此,
在
處取得最小值,故由題意
,所以![]()
(2)解:當
時,取
,有
,故
時不合題意.當
時,令
,即![]()
![]()
令
,得![]()
①當
時,
,
在
上恒成立。因此
在
上單調遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當
時,
,對于
,
,故
在
上單調遞增.因此當取
時,
,即
不成立.
故
不合題意.
綜上,k的最小值為
.
(3)證明:當n=1時,不等式左邊=
=右邊,所以不等式成立.
當
時,![]()
![]()
![]()
在(2)中取
,得
,
從而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
綜上,
,![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com