題目列表(包括答案和解析)
已知數(shù)列
的前n項(xiàng)和
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)若數(shù)列
是等比數(shù)列,公比為
,且滿足
,求數(shù)列
的前n項(xiàng)和
.
設(shè)數(shù)列
是等比數(shù)列,
,公比q是
的展開式中的第二項(xiàng)(按
的降冪排列),
(1)用
表示通項(xiàng)
與前
項(xiàng)和![]()
(2)若
=
,用
表示![]()
(09年長沙一中一模文)(13分) 設(shè)數(shù)列
的前
項(xiàng)和為
,且
,其中
為常數(shù)且
.
(1)證明:數(shù)列
是等比數(shù)列;
(2)設(shè)數(shù)列
的公比
,數(shù)列
滿足
,
(![]()
求數(shù)列
的通項(xiàng)公式;
(3)設(shè)
,
,數(shù)列
的前
項(xiàng)和為
,求證:當(dāng)
時(shí),
.
已知
是等差數(shù)列,其前n項(xiàng)和為Sn,
是等比數(shù)列,且
,
.
(Ⅰ)求數(shù)列
與
的通項(xiàng)公式;
(Ⅱ)記
,
,證明
(
).
【解析】(1)設(shè)等差數(shù)列
的公差為d,等比數(shù)列
的公比為q.
由
,得
,
,
.
由條件,得方程組
,解得![]()
所以
,
,
.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
![]()
![]()
![]()
而![]()
故
,![]()
(方法二:數(shù)學(xué)歸納法)
① 當(dāng)n=1時(shí),
,
,故等式成立.
② 假設(shè)當(dāng)n=k時(shí)等式成立,即
,則當(dāng)n=k+1時(shí),有:
![]()
![]()
![]()
![]()
![]()
![]()
即
,因此n=k+1時(shí)等式也成立
由①和②,可知對(duì)任意
,
成立.
已知數(shù)列
是首項(xiàng)為
的等比數(shù)列,且滿足![]()
.
(1) 求常數(shù)
的值和數(shù)列
的通項(xiàng)公式;
(2) 若抽去數(shù)列
中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、……、第
項(xiàng)、……,余下的項(xiàng)按原來的順序組成一個(gè)新的數(shù)列
,試寫出數(shù)列
的通項(xiàng)公式;
(3) 在(2)的條件下,設(shè)數(shù)列
的前
項(xiàng)和為
.是否存在正整數(shù)
,使得
?若存在,試求所有滿足條件的正整數(shù)
的值;若不存在,請(qǐng)說明理由.
【解析】第一問中解:由
得
,,
又因?yàn)榇嬖诔?shù)p使得數(shù)列
為等比數(shù)列,
則
即
,所以p=1
故數(shù)列
為首項(xiàng)是2,公比為2的等比數(shù)列,即
.
此時(shí)
也滿足,則所求常數(shù)
的值為1且![]()
第二問中,解:由等比數(shù)列的性質(zhì)得:
(i)當(dāng)
時(shí),
;
(ii) 當(dāng)
時(shí),
,
所以![]()
第三問假設(shè)存在正整數(shù)n滿足條件,則
,
則(i)當(dāng)
時(shí),
![]()
,
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com