題目列表(包括答案和解析)
如圖所示,圓柱的高為2,底面半徑為
,AE、DF是圓柱的兩條母線,過
作圓柱的截面交下底面于
.![]()
(1)求證:
;
(2)若四邊形ABCD是正方形,求證
;
(3)在(2)的條件下,求二面角A-BC-E的平面角的一個三角函數值。
![]()
【解析】第一問中,利用由圓柱的性質知:AD平行平面BCFE
又過
作圓柱的截面交下底面于
.
∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF
AD∥EF
第二問中,由線面垂直得到線線垂直。四邊形ABCD是正方形![]()
又![]()
BC、AE是平面ABE內兩條相交直線
![]()
![]()
第三問中,設正方形ABCD的邊長為x,則在![]()
在![]()
由(2)可知:
為二面角A-BC-E的平面角,所以![]()
證明:(1)由圓柱的性質知:AD平行平面BCFE
又過
作圓柱的截面交下底面于
.
∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF
AD∥EF![]()
(2)
四邊形ABCD是正方形![]()
又![]()
BC、AE是平面ABE內兩條相交直線
![]()
![]()
(3)設正方形ABCD的邊長為x,則在![]()
在![]()
由(2)可知:
為二面角A-BC-E的平面角,所以![]()
在邊長為
的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為AB、CF的中點,現沿AE、AF、EF折疊,使B、C、D三點重合,構成一個三棱錐.
(I)判別MN與平面AEF的位置關系,并給出證明;
(II)求多面體E-AFMN的體積.
![]()
【解析】第一問因翻折后B、C、D重合(如下圖),所以MN應是
的一條中位線,則利用線線平行得到線面平行。
第二問因為
平面BEF,……………8分
且
,
∴
,又
∴![]()
(1)因翻折后B、C、D重合(如圖),
![]()
所以MN應是
的一條中位線,………………3分
則
.………6分
(2)因為
平面BEF,……………8分
且
,
∴
,………………………………………10分
又
∴![]()
如圖,邊長為2的正方形ABCD,E是BC的中點,沿AE,DE將
折起,使得B與C重合于O.
(Ⅰ)設Q為AE的中點,證明:QD
AO;
(Ⅱ)求二面角O—AE—D的余弦值.
![]()
【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質定理得到線線垂直。取AO中點M,連接MQ,DM,由題意可得:AO
EO, DO
EO,
AO=DO=2.AO
DM
因為Q為AE的中點,所以MQ//E0,MQ
AO
AO
平面DMQ,AO
DQ
第二問中,作MN
AE,垂足為N,連接DN
因為AO
EO, DO
EO,EO
平面AOD,所以EO
DM
,因為AO
DM ,DM
平面AOE
因為MN
AE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=
![]()
(1)取AO中點M,連接MQ,DM,由題意可得:AO
EO, DO
EO,
AO=DO=2.AO
DM
因為Q為AE的中點,所以MQ//E0,MQ
AO
AO
平面DMQ,AO
DQ
(2)作MN
AE,垂足為N,連接DN
因為AO
EO, DO
EO,EO
平面AOD,所以EO
DM
,因為AO
DM ,DM
平面AOE
因為MN
AE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=![]()
二面角O-AE-D的平面角的余弦值為![]()
| π |
| 4 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com