題目列表(包括答案和解析)
在平面直角坐標系內已知兩點A(-1,0)、B(1,0),若將動點P(x,y)的橫坐標保持不變,縱坐標擴大到原來的
倍后得到點Q(x,
y),且滿足
·
=1.
(Ⅰ)求動點P所在曲線C的方程;
(Ⅱ)過點B作斜率為
的直線l交曲線C于M、N兩點,且
+
+
=
,又點H關于原點O的對稱點為點G,試問M、G、N、H四點是否共圓?若共圓,求出圓心坐標和半徑;若不共圓,請說明理由.
在平面直角坐標系內已知兩點A(-1,0)、B(1,0),若將動點P(x,y)的橫坐標保持不變,縱坐標擴大到原來的
倍后得到點Q(x,
y),且滿足
·
=1.
(Ⅰ)求動點P所在曲線C的方程;
(Ⅱ)過點B作斜率為
的直線l交曲線C于M、N兩點,且
+
+
=
,又點H關于原點O的對稱點為點G,試問M、G、N、H四點是否共圓?若共圓,求出圓心坐標和半徑;若不共圓,請說明理由.
| x2 |
| 2 |
| OT |
| OA |
| x0x |
| 2 |
| OP |
| OM |
| ON |
如圖1,在
中,
,D,E分別為AC,AB的中點,點F為線段CD上的一點,將
沿DE折起到
的位置,使
,如圖2.
(Ⅰ)求證:DE∥平面![]()
(Ⅱ)求證:![]()
(Ⅲ)線段
上是否存在點Q,使
?說明理由。
![]()
【解析】(1)∵DE∥BC,由線面平行的判定定理得出
(2)可以先證
,得出
,∵
∴![]()
∴![]()
(3)Q為
的中點,由上問
,易知
,取
中點P,連接DP和QP,不難證出
,
∴
∴
,又∵
∴![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com