題目列表(包括答案和解析)
解析:由題意知
當-2≤x≤1時,f(x)=x-2,
當1<x≤2時,f(x)=x3-2,
又∵f(x)=x-2,f(x)=x3-2在定義域上都為增函數,
∴f(x)的最大值為f(2)=23-2=6.
答案:C
已知
,
,
分別為
三個內角
,
,
的對邊,
.
(Ⅰ)求
;
(Ⅱ)若
=2,
的面積為
,求
,
.
【命題意圖】本題主要考查正余弦定理應用,是簡單題.
【解析】(Ⅰ)由
及正弦定理得
![]()
由于
,所以
,
又
,故
.
(Ⅱ)
的面積
=
=
,故
=4,
而
故
=8,解得
=2
已知
,設![]()
和
是方程
的兩個根,不等式
對任意實數
恒成立;
函數
有兩個不同的零點.求使“P且Q”為真命題的實數
的取值范圍.
【解析】本試題主要考查了命題和函數零點的運用。由題設x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
當a∈[1,2]時,
的最小值為3. 當a∈[1,2]時,
的最小值為3.
要使|m-5|≤|x1-x2|對任意實數a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判別式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”為真命題,只需P真Q真即可。
解:由題設x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
當a∈[1,2]時,
的最小值為3.
要使|m-5|≤|x1-x2|對任意實數a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判別式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
綜上,要使“P∧Q”為真命題,只需P真Q真,即![]()
解得實數m的取值范圍是(4,8]
| x2 |
| a2 |
| y2 |
| b2 |
| c |
| a |
| ||
| 2 |
| x2 |
| a2 |
| y2 |
| b2 |
| x2 |
| a2 |
| y2 |
| b2 |
| RP |
| PF2 |
| x2 |
| a2 |
| y2 |
| b2 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com