題目列表(包括答案和解析)
【答案】![]()
【解析】設(shè)
,有幾何意義知
的最小值為
, 又因?yàn)榇嬖趯?shí)數(shù)x滿足
,所以只要2大于等于f(x)的最小值即可.即
2,解得:
∈
,所以a的取值范圍是
.故答案為:
.
已知遞增等差數(shù)列
滿足:
,且
成等比數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式
;
(2)若不等式
對任意
恒成立,試猜想出實(shí)數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列
公差為
,
由題意可知
,即
,解得d,得到通項(xiàng)公式,第二問中,不等式等價(jià)于
,利用當(dāng)
時(shí),
;當(dāng)
時(shí),
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設(shè)數(shù)列
公差為
,由題意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等價(jià)于
,
當(dāng)
時(shí),
;當(dāng)
時(shí),
;
而
,所以猜想,
的最小值為
. …………8分
下證不等式
對任意
恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)
時(shí),
,成立.
假設(shè)當(dāng)
時(shí),不等式
成立,
當(dāng)
時(shí),
,
…………10分
只要證
,只要證
,
只要證
,只要證
,
只要證
,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調(diào)性證明.
要證 ![]()
只要證
,
設(shè)數(shù)列
的通項(xiàng)公式
, …………10分
, …………12分
所以對
,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而
,所以
恒成立,
故
的最小值為
.
已知函數(shù)
.(
)
(1)若
在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(2)若在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用
在區(qū)間
上單調(diào)遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進(jìn)而得到范圍;第二問中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.然后求解得到。
解:(1)
在區(qū)間
上單調(diào)遞增,
則
在區(qū)間
上恒成立. …………3分
即
,而當(dāng)
時(shí),
,故
.
…………5分
所以
.
…………6分
(2)令
,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.
在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.
∵
…………9分
① 若
,令
,得極值點(diǎn)
,
,
當(dāng)
,即
時(shí),在(
,+∞)上有
,此時(shí)
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當(dāng)
,即
時(shí),同理可知,
在區(qū)間
上遞增,
有
,也不合題意;
…………11分
② 若
,則有
,此時(shí)在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使
在此區(qū)間上恒成立,只須滿足![]()
,
由此求得
的范圍是
. …………13分
綜合①②可知,當(dāng)
時(shí),函數(shù)
的圖象恒在直線
下方.
如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
![]()
【解析】(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912413079631221/SYS201207091242012651351203_ST.files/image002.png">
又
是平面PAC內(nèi)的兩條相較直線,所以BD
平面PAC,
而
平面PAC,所以
.
(Ⅱ)設(shè)AC和BD相交于點(diǎn)O,連接PO,由(Ⅰ)知,BD
平面PAC,
所以
是直線PD和平面PAC所成的角,從而![]()
.
由BD
平面PAC,
平面PAC,知
.在
中,由![]()
,得PD=2OD.因?yàn)樗倪呅蜛BCD為等腰梯形,
,所以
均為等腰直角三角形,從而梯形ABCD的高為
于是梯形ABCD面積
在等腰三角形AOD中,![]()
所以![]()
故四棱錐
的體積為
.
![]()
【點(diǎn)評】本題考查空間直線垂直關(guān)系的證明,考查空間角的應(yīng)用,及幾何體體積計(jì)算.第一問只要證明BD
平面PAC即可,第二問由(Ⅰ)知,BD
平面PAC,所以
是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由
算得體積
設(shè)點(diǎn)
是拋物線![]()
![]()
的焦點(diǎn),
是拋物線
上的
個(gè)不同的點(diǎn)(![]()
).
(1) 當(dāng)
時(shí),試寫出拋物線
上的三個(gè)定點(diǎn)
、
、
的坐標(biāo),從而使得
;
(2)當(dāng)
時(shí),若
,
求證:
;
(3) 當(dāng)
時(shí),某同學(xué)對(2)的逆命題,即:
“若
,則
.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個(gè)研究方向中任選一個(gè)開展研究:
① 試構(gòu)造一個(gè)說明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù)
,試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請寫出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線
的焦點(diǎn)為
,設(shè)
,
分別過
作拋物線
的準(zhǔn)線
的垂線,垂足分別為
.
由拋物線定義得到
第二問設(shè)
,分別過
作拋物線
的準(zhǔn)線
垂線,垂足分別為
.
由拋物線定義得
![]()
![]()
第三問中①取
時(shí),拋物線
的焦點(diǎn)為
,
設(shè)
,
分別過![]()
作拋物線
的準(zhǔn)線
垂線,垂足分別為![]()
.由拋物線定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;![]()
解:(1)拋物線
的焦點(diǎn)為
,設(shè)
,
分別過
作拋物線
的準(zhǔn)線
的垂線,垂足分別為
.由拋物線定義得
![]()
![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以
,
故可取![]()
![]()
滿足條件.
(2)設(shè)
,分別過
作拋物線
的準(zhǔn)線
垂線,垂足分別為
.
由拋物線定義得
![]()
![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">
![]()
![]()
![]()
;
所以![]()
![]()
.
(3) ①取
時(shí),拋物線
的焦點(diǎn)為
,
設(shè)
,
分別過![]()
作拋物線
的準(zhǔn)線
垂線,垂足分別為![]()
.由拋物線定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;
,
則![]()
![]()
,![]()
![]()
.
故
,
,
,
是一個(gè)當(dāng)
時(shí),該逆命題的一個(gè)反例.(反例不唯一)
② 設(shè)
,分別過
作
拋物線
的準(zhǔn)線
的垂線,垂足分別為
,
由
及拋物線的定義得
,即
.
因?yàn)樯鲜霰磉_(dá)式與點(diǎn)
的縱坐標(biāo)無關(guān),所以只要將這
點(diǎn)都取在
軸的上方,則它們的縱坐標(biāo)都大于零,則
![]()
![]()
![]()
![]()
![]()
![]()
,
而
,所以
.
(說明:本質(zhì)上只需構(gòu)造滿足條件且
的一組
個(gè)不同的點(diǎn),均為反例.)
③ 補(bǔ)充條件1:“點(diǎn)
的縱坐標(biāo)
(
)滿足
”,即:
“當(dāng)
時(shí),若
,且點(diǎn)
的縱坐標(biāo)
(
)滿足
,則
”.此命題為真.事實(shí)上,設(shè)
,
分別過
作拋物線
準(zhǔn)線
的垂線,垂足分別為
,由
,
及拋物線的定義得
,即
,則
![]()
![]()
![]()
![]()
![]()
![]()
,
又由
,所以
,故命題為真.
補(bǔ)充條件2:“點(diǎn)
與點(diǎn)![]()
為偶數(shù),
關(guān)于
軸對稱”,即:
“當(dāng)
時(shí),若
,且點(diǎn)
與點(diǎn)![]()
為偶數(shù),
關(guān)于
軸對稱,則
”.此命題為真.(證略)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com