題目列表(包括答案和解析)
| 3 |
| 2 |
| 9 |
| 8 |
某市的老城區改造建筑用地平面示意圖如圖所示.經規劃調研確定,老城區改造規劃建筑用地區域可近似為半徑是R的圓面.該圓的內接四邊形ABCD是原老城區建筑用地,測量可知邊界AB=AD=4萬米,BC=6萬米,CD=2萬米.
(I)請計算原老城區建筑用地ABCD的面積及圓面的半徑R的值;
(II)因地理條件的限制,邊界AD、CD不能變更,而邊界AB、BC可以調整.為了提高老城區改造建筑用地的利用率,請在
上設計一點P,使得老城區改造的新建筑用地APCD的面積最大,并求出其最大值.
![]()
某市的老城區改造建筑用地平面示意圖如圖所示.經規劃調研確定,老城區改造規劃建筑用地區域可近似為半徑是R的圓面.該圓的內接四邊形ABCD是原老城區建筑用地,測量可知邊界AB=AD=4萬米,BC=6萬米,CD=2萬米.
(I)請計算原老城區建筑用地ABCD的面積及圓面的半徑R的值;
(II)因地理條件的限制,邊界AD、CD不能變更,而邊界AB、BC可以調整.為了提高老城區改造建筑用地的利用率,請在
上設計一點P,使得老城區改造的新建筑用地APCD的面積最大,并求出其最大值.
![]()
已知函數
,(
),![]()
(1)若曲線
與曲線
在它們的交點(1,c)處具有公共切線,求a,b的值
(2)當
時,若函數
的單調區間,并求其在區間(-∞,-1)上的最大值。
【解析】(1)
,
∵曲線
與曲線
在它們的交點(1,c)處具有公共切線
∴
,![]()
∴![]()
(2)令
,當
時,![]()
令
,得![]()
時,
的情況如下:
|
x |
|
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
|
|
|
|
所以函數
的單調遞增區間為
,
,單調遞減區間為![]()
當
,即
時,函數
在區間
上單調遞增,
在區間
上的最大值為
,
當
且
,即
時,函數
在區間
內單調遞增,在區間
上單調遞減,
在區間
上的最大值為![]()
當
,即a>6時,函數
在區間
內單調遞贈,在區間
內單調遞減,在區間
上單調遞增。又因為![]()
所以
在區間
上的最大值為
。
已知數列
是各項均不為0的等差數列,公差為d,
為其前n項和,且滿足
,
.數列
滿足
,
,
為數列
的前n項和.
(1)求數列
的通項公式
和數列
的前n項和
;
(2)若對任意的
,不等式
恒成立,求實數
的取值范圍;
(3)是否存在正整數![]()
,使得
成等比數列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
時,
滿足
,![]()
,
![]()
第二問,①當n為偶數時,要使不等式
恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數時,要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
第三問
,
若
成等比數列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
時,
滿足
,![]()
,
.
(2)①當n為偶數時,要使不等式
恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數時,要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
綜合①、②可得
的取值范圍是
.
(3)
,
若
成等比數列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此時n=12.
因此,當且僅當m=2,
n=12時,數列
中的
成等比數列
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com