題目列表(包括答案和解析)
|
| β |
|
| α |
| α |
| β |
|
| π |
| 4 |
| HP |
| PM |
| PM |
| 3 |
| 2 |
| MQ |
| x2 |
| 2 |
| x2 |
| a2 |
| y2 |
| b2 |
在直角坐標系
中,曲線
的參數方程為
.在極坐標系(與直角坐標系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,曲線
的方程為
則
與
的交點個數為 .
易得
,故有2個交點。
已知函數
,其中
.
(1)若
在
處取得極值,求曲線
在點
處的切線方程;
(2)討論函數
在
的單調性;
(3)若函數
在
上的最小值為2,求
的取值范圍.
【解析】第一問,
因
在
處取得極值
所以,
,解得
,此時
,可得求曲線
在點
處的切線方程為:![]()
第二問中,易得
的分母大于零,
①當
時,
,函數
在
上單調遞增;
②當
時,由
可得
,由
解得![]()
第三問,當
時由(2)可知,
在
上處取得最小值
,
當
時由(2)可知
在
處取得最小值
,不符合題意.
綜上,函數
在
上的最小值為2時,求
的取值范圍是![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com