題目列表(包括答案和解析)
用數學歸納法證明:
.
【解析】首先證明當n=1時等式成立,再假設n=k時等式成立,得到等式
,
下面證明當n=k+1時等式左邊
,
根據前面的假設化簡即可得到結果,最后得到結論.
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
當
時
單調遞減;當
時
單調遞增,故當
時,
取最小值![]()
于是對一切
恒成立,當且僅當
. ①
令
則![]()
當
時,
單調遞增;當
時,
單調遞減.
故當
時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,
的取值集合為
.
(Ⅱ)由題意知,
令
則
![]()
![]()
令
,則
.當
時,
單調遞減;當
時,
單調遞增.故當
,
即![]()
從而
,
又![]()
![]()
所以![]()
因為函數
在區間
上的圖像是連續不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出
取最小值
對一切x∈R,f(x)
1恒成立轉化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
已知
,(其中
)
⑴求
及
;
⑵試比較
與
的大小,并說明理由.
【解析】第一問中取
,則
;
…………1分
對等式兩邊求導,得![]()
取
,則
得到結論
第二問中,要比較
與
的大小,即比較:
與
的大小,歸納猜想可得結論當
時,
;
當
時,
;
當
時,
;
猜想:當
時,
運用數學歸納法證明即可。
解:⑴取
,則
;
…………1分
對等式兩邊求導,得
,
取
,則
。 …………4分
⑵要比較
與
的大小,即比較:
與
的大小,
當
時,
;
當
時,
;
當
時,
;
…………6分
猜想:當
時,
,下面用數學歸納法證明:
由上述過程可知,
時結論成立,
假設當
時結論成立,即
,
當
時,![]()
而![]()
∴![]()
即
時結論也成立,
∴當
時,
成立。
…………11分
綜上得,當
時,
;
當
時,
;
當
時,
在數列
中,
記![]()
(Ⅰ)求
、
、
、
并推測
;
(Ⅱ)用數學歸納法證明你的結論.
【解析】第一問利用遞推關系可知,
、
、
、
,猜想可得![]()
第二問中,①當
時,
=
,又
,猜想正確
②假設當
時猜想成立,即
,
當
時,
=![]()
=
,即當
時猜想也成立
兩步驟得到。
(2)①當
時,
=
,又
,猜想正確
②假設當
時猜想成立,即
,
當
時,
=![]()
=
,即當
時猜想也成立
由①②可知,對于任何正整數
都有
成立
已知數列
的前
項和為
,且
(
N*),其中
.
(Ⅰ) 求
的通項公式;
(Ⅱ) 設
(
N*).
①證明:
;
② 求證:
.
【解析】本試題主要考查了數列的通項公式的求解和運用。運用
關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以
利用放縮法,從此得到結論。
解:(Ⅰ)當
時,由
得
. ……2分
若存在
由
得
,
從而有
,與
矛盾,所以
.
從而由
得
得
. ……6分
(Ⅱ)①證明:![]()
證法一:∵
∴![]()
∴
∴
.…………10分
證法二:
,下同證法一.
……10分
證法三:(利用對偶式)設
,
,
則
.又
,也即
,所以
,也即
,又因為
,所以
.即
………10分
證法四:(數學歸納法)①當
時,
,命題成立;
②假設
時,命題成立,即
,
則當
時,![]()
![]()
即![]()
即![]()
故當
時,命題成立.
綜上可知,對一切非零自然數
,不等式②成立. ………………10分
②由于
,
所以
,
從而
.
也即![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com