題目列表(包括答案和解析)
解:(1)OA=1,OC=2
則A點(diǎn)坐標(biāo)為(0,1),C點(diǎn)坐標(biāo)為(2,0)
設(shè)直線AC的解析式為y=kx+b
![]()
解得![]()
直線AC的解析式為
··················· 2分
(2)
或![]()
(正確一個(gè)得2分)························· 8分
(3)如圖,設(shè)![]()
過
點(diǎn)作
于F
![]()
由折疊知![]()
![]()
或2··········· 10分
一、選擇題
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
C
B
B
C
B
D
A
D
D
C
二、填空題
題 號(hào)
11
12
13
14
15
答 案
2<x<8
(-3,-7)

34.28
三、解答題(本大題有7題,共55分)
16.1
17.經(jīng)檢驗(yàn):x1=0,x2=2是原方程的根.
18.解:(1)根據(jù)題意有AF∥BC,∴∠ACB=∠GAF,又 ∠ABC=∠AFG=90
,
∴△ABC∽△GFA
∴
,得BC=3.2(m),CD=(2+3)-3.2=1.8(m)
(2)設(shè)樓梯應(yīng)建x個(gè)臺(tái)階,則,
解得,14<x<16
∴樓梯應(yīng)建15個(gè)臺(tái)階
19.(1)
(2)

不公平改為“如果和為0,李明得3分,其余不變
20.解:(1)△AEF是等邊三角形.
由折疊過程易得:
∵BC∥AD,∴
∴△AEF是等邊三角形.
(2)不一定.
當(dāng)矩形的長(zhǎng)恰好等于等邊△AEF的邊AF時(shí),
即矩形的寬∶長(zhǎng)=AB∶AF=sin60°=
時(shí)正好能折出.
如果設(shè)矩形的長(zhǎng)為a,寬為b,
可知當(dāng)
時(shí),按此法一定能折出等邊三角形;
當(dāng)
時(shí),按此法無法折出完整的等邊三角形.
21.(1)證明:∵AB = AC,點(diǎn)D是邊BC的中點(diǎn),∴AD⊥BD.
又∵BD是圓O直徑,∴AD是圓O的切線.
(2)解:連結(jié)OP,OE.
由BC = 8,得CD = 4,OC = 6,OP = 2.
∵PC是圓O的切線,O為圓心,∴
.
于是,利用勾股定理,得
.
∵
,
,
∴△DCE∽△PCO.
∴
,即得
.
∵PE、DE是圓O的切線,∴
.
于是,由
,得
.
又∵OB = OP,∴
.
于是,由
,得
.
∴
.∴OE // AB.
∴
,即得
.
∴
.
22. 解:(1)因?yàn)槎魏瘮?shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(-1,0)、B(3,0)、N(2,3)
所以,可建立方程組:
,解得:
所以,所求二次函數(shù)的解析式為y=-x2+2x+3,
所以,頂點(diǎn)M(1,4),點(diǎn)C(0,3) -------2分
(2)直線y=kx+d經(jīng)過C、M兩點(diǎn),所以
,即k=1,d=3,
直線解析式為y=x+3
令y=0,得x=-3,故D(-3,0)
∴ CD=
,AN=
,AD=2,CN=2
∴CD=AN,AD=CN
∴ 四邊形CDAN是平行四邊形
(3)假設(shè)存在這樣的點(diǎn)P,使以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),并且與直線CD相切,因?yàn)檫@個(gè)二次函數(shù)的對(duì)稱軸是直線x=1,故可設(shè)P(1,
),
則PA是圓的半徑且PA2=y02+22,
過P作直線CD的垂線,垂足為Q,則PQ=PA時(shí)以P為圓心的圓與直線CD相切。
由第(2)小題易得:△MDE為等腰直角三角形,故△PQM也是等腰直角三角形,
由P(1,
)得PE=
,PM=|4-
|,
,
由PQ2=PA2得方程:
,解得
,符合題意,
所以,滿足題意的點(diǎn)P存在,其坐標(biāo)為(1,
)或(1,
)
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com