題目列表(包括答案和解析)
已知數列
是各項均不為0的等差數列,公差為d,
為其前n項和,且滿足
,
.數列
滿足
,
,
為數列
的前n項和.
(1)求數列
的通項公式
和數列
的前n項和
;
(2)若對任意的
,不等式
恒成立,求實數
的取值范圍;
(3)是否存在正整數![]()
,使得
成等比數列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在
中,令n=1,n=2,
得
即
解得
,,
[
又
時,
滿足
,![]()
,
![]()
第二問,①當n為偶數時,要使不等式
恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數時,要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
第三問
,
若
成等比數列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
(1)(法一)在
中,令n=1,n=2,
得
即
解得
,,
[
又
時,
滿足
,![]()
,
.
(2)①當n為偶數時,要使不等式
恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數時,要使不等式
恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
綜合①、②可得
的取值范圍是
.
(3)
,
若
成等比數列,則
,
即. ![]()
由
,可得
,即
,
. ![]()
又
,且m>1,所以m=2,此時n=12.
因此,當且僅當m=2,
n=12時,數列
中的
成等比數列
已知函數
,
(1)求函數
的定義域;
(2)求函數
在區間
上的最小值;
(3)已知
,命題p:關于x的不等式
對函數
的定義域上的任意
恒成立;命題q:指數函數
是增函數.若“p或q”為真,“p且q”為假,求實數m的取值范圍.
【解析】第一問中,利用由
即![]()
![]()
第二問中,
,
得:
![]()
,
![]()
第三問中,由在函數
的定義域上
的任意
,
,當且僅當
時等號成立。當命題p為真時,
;而命題q為真時:指數函數
.因為“p或q”為真,“p且q”為假,所以
當命題p為真,命題q為假時;當命題p為假,命題q為真時分為兩種情況討論即可 。
解:(1)由
即![]()
![]()
(2)
,
得:
![]()
,
![]()
(3)由在函數
的定義域上
的任意
,
,當且僅當
時等號成立。當命題p為真時,
;而命題q為真時:指數函數
.因為“p或q”為真,“p且q”為假,所以
當命題p為真,命題q為假時,![]()
當命題p為假,命題q為真時,
,
所以![]()
已知函數![]()
;
(1)若函數
在其定義域內為單調遞增函數,求實數
的取值范圍。
(2)若函數
,若在[1,e]上至少存在一個x的值使
成立,求實數
的取值范圍。
【解析】第一問中,利用導數
,因為
在其定義域內的單調遞增函數,所以
內滿足
恒成立,得到結論第二問中,在[1,e]上至少存在一個x的值使
成立,等價于不等式
在[1,e]上有解,轉換為不等式有解來解答即可。
解:(1)
,
因為
在其定義域內的單調遞增函數,
所以
內滿足
恒成立,即
恒成立,
亦即
,
即可 又![]()
當且僅當
,即x=1時取等號,
在其定義域內為單調增函數的實數k的取值范圍是
.
(2)在[1,e]上至少存在一個x的值使
成立,等價于不等式
在[1,e]上有解,設![]()
上的增函數,
依題意需![]()
實數k的取值范圍是![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com