題目列表(包括答案和解析)
設(shè)△
的內(nèi)角
所對邊的長分別為
,且有![]()
(Ⅰ)求角A的大小;
(Ⅱ)若
,
,
為
的中點,求
的長。
【解析】(1)由題,
,則
,故
,即
.
(2)因
,
,因
為
的中點,故
,則
,所以![]()
已知函數(shù)
(
為實數(shù)).
(Ⅰ)當
時,求
的最小值;
(Ⅱ)若
在
上是單調(diào)函數(shù),求
的取值范圍.
【解析】第一問中由題意可知:
. ∵
∴
∴![]()
.
當
時,
;
當
時,
. 故
.
第二問![]()
.
當
時,
,在
上有
,
遞增,符合題意;
令
,則![]()
,∴
或
在
上恒成立.轉(zhuǎn)化后解決最值即可。
解:(Ⅰ) 由題意可知:
. ∵
∴
∴![]()
.
當
時,
;
當
時,
. 故
.
(Ⅱ) ![]()
.
當
時,
,在
上有
,
遞增,符合題意;
令
,則![]()
,∴
或
在
上恒成立.∵二次函數(shù)
的對稱軸為
,且![]()
∴
或![]()
或![]()
或![]()
或
. 綜上![]()
已知橢圓![]()
的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(I)求橢圓
的方程;
(II)若過點
(2,0)的直線與橢圓
相交于兩點
,設(shè)
為橢圓上一點,且滿足
(O為坐標原點),當
<
時,求實數(shù)
的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運用。
第一問中,利用![]()
第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中
,可得k的范圍,然后利用向量的
<
不等式,表示得到t的范圍。
解:(1)由題意知
![]()
已知函數(shù)
在
取得極值
(1)求
的單調(diào)區(qū)間(用
表示);
(2)設(shè)
,
,若存在
,使得
成立,求
的取值范圍.
【解析】第一問利用![]()
![]()
根據(jù)題意
在
取得極值, ![]()
對參數(shù)a分情況討論,可知
當
即
時遞增區(qū)間:
遞減區(qū)間:
,
![]()
當
即
時遞增區(qū)間:
遞減區(qū)間:
,
![]()
第二問中,
由(1)知:
在
,
![]()
,![]()
在
![]()
![]()
從而求解。
解: ![]()
…..3分
在
取得極值,
……………………..4分
(1) 當
即
時 遞增區(qū)間:
遞減區(qū)間:
,
![]()
當
即
時遞增區(qū)間:
遞減區(qū)間:
,
………….6分
(2)
由(1)知:
在
,
![]()
,![]()
在
![]()
……………….10分
, 使
成立
![]()
![]()
![]()
得: ![]()
設(shè)A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數(shù)表A,求K(A)的值;
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A∈S(2,3)形如
|
1 |
1 |
c |
|
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因為
,![]()
所以![]()
(2) 不妨設(shè)
.由題意得
.又因為
,所以
,
于是
,
,
![]()
所以
,當
,且
時,
取得最大值1。
(3)對于給定的正整數(shù)t,任給數(shù)表
如下,
|
|
|
… |
|
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表
,并且
,因此,不妨設(shè)
,
且![]()
。
由
得定義知,
,![]()
![]()
又因為![]()
所以![]()
![]()
![]()
所以,![]()
對數(shù)表
:
|
1 |
1 |
… |
1 |
|
… |
|
|
|
|
… |
|
-1 |
… |
-1 |
則
且
,
綜上,對于所有的
,
的最大值為![]()
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com