題目列表(包括答案和解析)
設數列
的各項均為正數.若對任意的
,存在
,使得
成立,則稱數列
為“Jk型”數列.
(1)若數列
是“J2型”數列,且
,
,求
;
(2)若數列
既是“J3型”數列,又是“J4型”數列,證明:數列
是等比數列.
【解析】1)中由題意,得
,
,
,
,…成等比數列,且公比
,
所以.![]()
(2)中證明:由{
}是“j4型”數列,得
,…成等比數列,設公比為t. 由{
}是“j3型”數列,得
,…成等比數列,設公比為
;
,…成等比數列,設公比為
;
…成等比數列,設公比為
;
已知函數
(
為實數).
(Ⅰ)當
時,求
的最小值;
(Ⅱ)若
在
上是單調函數,求
的取值范圍.
【解析】第一問中由題意可知:
. ∵
∴
∴![]()
.
當
時,
;
當
時,
. 故
.
第二問![]()
.
當
時,
,在
上有
,
遞增,符合題意;
令
,則![]()
,∴
或
在
上恒成立.轉化后解決最值即可。
解:(Ⅰ) 由題意可知:
. ∵
∴
∴![]()
.
當
時,
;
當
時,
. 故
.
(Ⅱ) ![]()
.
當
時,
,在
上有
,
遞增,符合題意;
令
,則![]()
,∴
或
在
上恒成立.∵二次函數
的對稱軸為
,且![]()
∴
或![]()
或![]()
或![]()
或
. 綜上![]()
若函數
在定義域內存在區間
,滿足
在
上的值域為
,則稱這樣的函數
為“優美函數”.
(Ⅰ)判斷函數
是否為“優美函數”?若是,求出
;若不是,說明理由;
(Ⅱ)若函數
為“優美函數”,求實數
的取值范圍.
【解析】第一問中,利用定義,判定由題意得
,由
,所以![]()
第二問中, 由題意得方程
有兩實根
設
所以關于m的方程
在
有兩實根,
即函數
與函數
的圖像在
上有兩個不同交點,從而得到t的范圍。
解(I)由題意得
,由
,所以
(6分)
(II)由題意得方程
有兩實根
設
所以關于m的方程
在
有兩實根,
即函數
與函數
的圖像在
上有兩個不同交點。
![]()
已知函數
在
取得極值
(1)求
的單調區間(用
表示);
(2)設
,
,若存在
,使得
成立,求
的取值范圍.
【解析】第一問利用![]()
![]()
根據題意
在
取得極值, ![]()
對參數a分情況討論,可知
當
即
時遞增區間:
遞減區間:
,
![]()
當
即
時遞增區間:
遞減區間:
,
![]()
第二問中,
由(1)知:
在
,
![]()
,![]()
在
![]()
![]()
從而求解。
解: ![]()
…..3分
在
取得極值,
……………………..4分
(1) 當
即
時 遞增區間:
遞減區間:
,
![]()
當
即
時遞增區間:
遞減區間:
,
………….6分
(2)
由(1)知:
在
,
![]()
,![]()
在
![]()
……………….10分
, 使
成立
![]()
![]()
![]()
得: ![]()
已知
中,內角
的對邊的邊長分別為
,且![]()
(I)求角
的大小;
(II)若
求
的最小值.
【解析】第一問,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,![]()
第二問,![]()
三角函數的性質運用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,
,則當
,即
時,y的最小值為
.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com