【題目】在平面直角坐標(biāo)系
中,拋物線
的開口向上,且經(jīng)過點(diǎn)
.
(1)若此拋物線經(jīng)過點(diǎn)
,且與
軸相交于點(diǎn)
.
①填空:
(用含
的代數(shù)式表示);
②當(dāng)
的值最小時(shí),求拋物線的解析式;
(2)若
,當(dāng)
,拋物線上的點(diǎn)到
軸距離的最大值為3時(shí),求
的值.
【答案】(1)①﹣2a﹣1,②拋物線解析式為y=x2﹣3x+
;(2)1或﹣5.
【解析】
試題分析:(1)①由A點(diǎn)坐標(biāo)可求得c,再把B點(diǎn)坐標(biāo)代入可求得b與a的關(guān)系式,可求得答案;②用a可表示出拋物線解析式,令y=0可得到關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系可用a表示出EF的值,再利用函數(shù)性質(zhì)可求得其取得最小值時(shí)a的值,可求得拋物線解析式;
(2)可用b表示出拋物線解析式,可求得其對稱軸為x=﹣b,由題意可得出當(dāng)x=0、x=1或x=﹣b時(shí),拋物線上的點(diǎn)可能離x軸最遠(yuǎn),可分別求得其函數(shù)值,得到關(guān)于b的方程,可求得b的值.
試題解析:(1)①∵拋物線y=ax2+bx+c的開口向上,且經(jīng)過點(diǎn)A(0,
),
∴c=
,∵拋物線經(jīng)過點(diǎn)B(2,
),∴
=4a+2b+
,
∴b=﹣2a﹣1,故答案為﹣2a﹣1;
②由①可得拋物線解析式為y=ax2﹣(2a+1)x+
,
令y=0可得ax2﹣(2a+1)x+
=0,
∵△=(2a+1)2﹣4a×
=4a2﹣2a+1=4(a﹣
)2+
>0,
∴方程有兩個(gè)不相等的實(shí)數(shù)根,設(shè)為x1、x2,
∴x1+x2=
,x1x2=
,
∴EF2=(x1﹣x2)2=(x1+x2)2﹣4x1x2=
,
∴當(dāng)a=1時(shí),EF2有最小值,即EF有最小值,
∴拋物線解析式為y=x2﹣3x+
;
(2)當(dāng)a=
時(shí),拋物線解析式為y=
x2+bx+
,
∴拋物線對稱軸為x=﹣b,
∴只有當(dāng)x=0、x=1或x=﹣b時(shí),拋物線上的點(diǎn)才有可能離x軸最遠(yuǎn),
當(dāng)x=0時(shí),y=
,當(dāng)x=1時(shí),y=
+b+
=2+b,當(dāng)x=﹣b時(shí),y=
(﹣b)2+b(﹣b)+
=﹣
b2+
,
①當(dāng)|2+b|=3時(shí),b=1或b=﹣5,且頂點(diǎn)不在0<x<1范圍內(nèi),滿足條件;
②當(dāng)|﹣
b2+
|=3時(shí),b=±3,對稱軸為直線x=±3,不在0<x<1范圍內(nèi),故不符合題意,
綜上可知b的值為1或﹣5.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解八年級(jí)學(xué)生最喜歡的球類情況,隨機(jī)抽取了八年級(jí)部分學(xué)生進(jìn)行問卷調(diào)查,調(diào)查分為最喜歡籃球、乒乓球、足球、排球共四種情況,每名同學(xué)選且只選一項(xiàng).現(xiàn)將調(diào)查結(jié)果繪制成如下所示的兩幅統(tǒng)計(jì)圖.
![]()
請結(jié)合這兩幅統(tǒng)計(jì)圖,解決下列問題:
(1)在這次問卷調(diào)查中,一共抽取了 名學(xué)生;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校八年級(jí)共有
名學(xué)生,請你估計(jì)其中最喜歡排球的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線
與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線
經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D為直線AC上方拋物線上一動(dòng)點(diǎn);
①連接BC、CD,設(shè)直線BD交線段AC于點(diǎn)E,△CDE的面積為
,△BCE的面積為
,求
的最大值;
②過點(diǎn)D作DF⊥AC,垂足為點(diǎn)F,連接CD,是否存在點(diǎn)D,使得△CDF中的某個(gè)角恰好等于∠BAC的2倍?若存在,求點(diǎn)D的橫坐標(biāo);若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校學(xué)生對新聞、體育、動(dòng)畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機(jī)選取該校部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生從中只選一類最喜愛的電視節(jié)目.以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分.
![]()
根據(jù)以上信息,解答下列問題:
(1)被調(diào)查的學(xué)生中,最喜愛體育節(jié)目的有 人,這些學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為 %;
(2)被調(diào)查學(xué)生的總數(shù)為 人,統(tǒng)計(jì)表中
的值為 ,統(tǒng)計(jì)圖中
的值為 ;
(3)在統(tǒng)計(jì)圖中,
類所對應(yīng)扇形圓心角的度數(shù)為 ;
(4)該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校最喜愛欣慰節(jié)目的學(xué)生數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形
的頂點(diǎn)
是坐標(biāo)原點(diǎn),點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,點(diǎn)
分別為四邊形
邊上的動(dòng)點(diǎn),動(dòng)點(diǎn)
從點(diǎn)
開始,以每秒1個(gè)單位長度的速度沿
路線向中點(diǎn)
勻速運(yùn)動(dòng),動(dòng)點(diǎn)
從
點(diǎn)開始,以每秒兩個(gè)單位長度的速度沿
路線向終點(diǎn)
勻速運(yùn)動(dòng),點(diǎn)
同時(shí)從
點(diǎn)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)后,另一點(diǎn)也隨之停止運(yùn)動(dòng)。設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間
秒(
),
的面積為
.
(1)填空:
的長是 ,
的長是 ;
(2)當(dāng)
時(shí),求
的值;
(3)當(dāng)
時(shí),設(shè)點(diǎn)
的縱坐標(biāo)為
,求
與
的函數(shù)關(guān)系式;
(4)若
,請直接寫出此時(shí)
的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC的平分線與BC的垂直平分線相交于點(diǎn)D , DE⊥AB , DF⊥AC , 垂足分別為E , F , AB=11,AC=5,則BE= . ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com