【題目】已知函數(shù)y=﹣x2+ax﹣
在區(qū)間[0,1]上的最大值是2,求實(shí)數(shù)a的值.
【答案】解:∵y=f(x)=﹣
+
(a2﹣a+2),對稱軸為x=
,
(I)當(dāng)0≤
≤1時,即0≤a≤2時,f(x)max=
(a2﹣a+2),
由
(a2﹣a+2)=2得a=﹣2或a=3與0≤a≤2矛盾,不和要求
(II)當(dāng)
<0,即a<0時,f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0),由f(0)=2
得﹣
+
=2,解得a=﹣6
(III)當(dāng)
>1,即a>2時,f(x)在[0,1]上單調(diào)遞增,f(x)max=f(1),
由f(1)=2得:﹣1+a﹣
+
=2,解得a= ![]()
綜上所述,a=﹣6或a= ![]()
【解析】先求對稱軸,比較對稱軸和區(qū)間的關(guān)系,利用開口向下的二次函數(shù)離對稱軸越近函數(shù)值越大來解題.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)在閉區(qū)間上的最值的相關(guān)知識可以得到問題的答案,需要掌握當(dāng)
時,當(dāng)
時,
;當(dāng)
時在
上遞減,當(dāng)
時,
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱錐A-BOC中,OA⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=
,動點(diǎn)D在線段AB上.
![]()
(1)求證:平面COD⊥平面AOB;
(2)當(dāng)OD⊥AB時,求三棱錐C-OBD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形
中,
點(diǎn)
是
邊的中點(diǎn),將
沿
折起,使平面
平面
,連接
得到如圖
所示的幾何體.
![]()
(1)求證;
平面
;
(2)若
二面角
的平面角的正切值為
求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)P在☉O外,PC是☉O的切線,切點(diǎn)為C,直線PO與☉O相交于點(diǎn)A,B. ![]()
(1)試探索∠BCP與∠P的數(shù)量關(guān)系;
(2)若∠A=30°,則PB與PA有什么關(guān)系?
(3)∠A可能等于45°嗎?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若函數(shù)
有三個不同的極值點(diǎn),求
的值;
(2)若存在實(shí)數(shù)
,使對任意的
,不等式
恒成立,求正整數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
為實(shí)數(shù),函數(shù)
.
(1)求
的極值;
(2)當(dāng)
在什么范圍內(nèi)取值時,曲線
與
軸僅有一個交點(diǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】☉O為△ABC的內(nèi)切圓,AB=9,BC=8,CA=10,點(diǎn)D,E分別為AB,AC上的點(diǎn),且DE為☉O的切線,求△ADE的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知D,E,F分別為△ABC的邊BC,CA,AB的中點(diǎn),記
=a ,
=b.則下列命題中正確的個數(shù)是( )
①
=
a-b;②
=a+
b;③
=
a+
b;④
0.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+3x+a
(1)當(dāng)a=﹣2時,求不等式f(x)>2的解集
(2)若對任意的x∈[1,+∞),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com