【題目】如圖,四邊形
為菱形,四邊形
為平行四邊形,設(shè)
與
相交于點(diǎn)
,
.
![]()
(1)證明:平面
平面
;
(2)若
,求三棱錐
的體積.
【答案】(1)證明見解析;(2)
.
【解析】
試題分析:(1)要證面面垂直,需要找線面垂直,本題中重點(diǎn)分析線段
,利用條件底面是菱形可得
,通過全等可知
,從而
,故
是平面
的垂線,從而得證;(2)由
知點(diǎn)
到平面
的距離為點(diǎn)
到平面
的距離的兩倍,所以
,作
,證明
平面
,利用三棱錐體積公式求解;也可證明
平面
,從而直接求高,計算體積.
試題解析:(1)證明:
![]()
連接
,
∵四邊形
為菱形,
∵
,
在
和
中,
,
,
∴
,
∴
,
∴
,
∵
,
∴
平面
,
∵
平面
,
∴平面
平面
;
(2)解法一:連接
,∵
面
平面
,∴
,
在平行四邊形
中,易知
,
∴
,即
,又因?yàn)?/span>
為平面
內(nèi)的兩條相交直線,所以
平面
,所以點(diǎn)
到平面
的距離為
,
∵
,
∴三棱錐
的體積為
.
解法二:∵
,∴點(diǎn)
到平面
的距離為點(diǎn)
到平面
的距離的兩倍,所以
,
作
,∵平面
平面
平面
,
∴
,
∴三棱錐
的體積為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天水市第一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進(jìn)行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,
得到如下的
列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為
.
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:
。
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐
中,
, △
是斜邊
的等腰直角三角形, 以下結(jié)論中: ① 異面直線
與
所成的角為
;② 直線
平面
;③ 面
面
;④ 點(diǎn)
到平面
的距離是
. 其中正確結(jié)論的序號是 ____________________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求
到平面
的距離
(2)在線段
上是否存在一點(diǎn)
,使
?若存在,求出
的值;若不存在,說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是
的導(dǎo)函數(shù),
為自然對數(shù)的底數(shù).
(1)討論
的單調(diào)性;
(2)當(dāng)
時,證明:
;
(3)當(dāng)
時,判斷函數(shù)
零點(diǎn)的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來我國電子商務(wù)行業(yè)迎來篷勃發(fā)展的新機(jī)遇,2016年雙11期間,某購物平臺的銷售業(yè)績高達(dá)一千多億人民幣.與此同時,相關(guān)管理部門推出了針對電商的商品和服務(wù)的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進(jìn)行統(tǒng)計,對商品的好評率為0.6,對服務(wù)的好評率為0.75,其中對商品和服務(wù)都做出好評的交易為80次.
(Ⅰ)請完成如下列聯(lián)表;
![]()
(Ⅱ)是否可以在犯錯誤的概率不超過0.1%的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān)?
(Ⅲ)若針對商品的好評率,采用分層抽樣的方式從這200次交易中取出5次交易,并從中選擇兩次交易進(jìn)行客戶回訪,求只有一次好評的概率.
![]()
(
,其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2時,恒有f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)當(dāng)
時,函數(shù)
與
在
處的切線互相垂直,求
的值;
(2)若函數(shù)
在定義域內(nèi)不單調(diào),求
的取值范圍;
(3)是否存在正實(shí)數(shù)
,使得
對任意正實(shí)數(shù)
恒成立?若存在,求出滿足條件的實(shí)數(shù)
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,為了保護(hù)環(huán)境,實(shí)現(xiàn)城市綠化,某房地產(chǎn)公司要在拆遷地長方形ABCD處規(guī)劃一塊長方形地面HPGC,建造住宅小區(qū)公園,但不能越過文物保護(hù)區(qū)三角形AEF的邊線EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,問如何設(shè)計才能使公園占地面積最大,求出最大面積.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com