【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長(zhǎng)交AB于點(diǎn)G.
![]()
(Ⅰ)證明:G是AB的中點(diǎn);
(Ⅱ)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說明作法及理由),并求四面體PDEF的體積.
【答案】(Ⅰ)見解析;(Ⅱ)作圖見解析,體積為
.
【解析】試題分析:證明
由
可得
是
的中點(diǎn).(Ⅱ)在平面
內(nèi),過點(diǎn)
作
的平行線交
于點(diǎn)
,
即為
在平面
內(nèi)的正投影.根據(jù)正三棱錐的側(cè)面是直角三角形且
,可得
在等腰直角三角形
中,可得
四面體
的體積![]()
試題解析:(Ⅰ)因?yàn)?/span>
在平面
內(nèi)的正投影為
,所以![]()
![]()
因?yàn)?/span>
在平面
內(nèi)的正投影為
,所以![]()
所以
平面
,故![]()
又由已知可得,
,從而
是
的中點(diǎn).
(Ⅱ)在平面
內(nèi),過點(diǎn)
作
的平行線交
于點(diǎn)
,
即為
在平面
內(nèi)的正投影.
理由如下:由已知可得
,
,又
,所以
,因此
平面
,即點(diǎn)
為
在平面
內(nèi)的正投影.
連結(jié)
,因?yàn)?/span>
在平面
內(nèi)的正投影為
,所以
是正三角形
的中心.
由(Ⅰ)知,
是
的中點(diǎn),所以
在
上,故![]()
由題設(shè)可得
平面
,
平面
,所以
,因此![]()
由已知,正三棱錐的側(cè)面是直角三角形且
,可得![]()
在等腰直角三角形
中,可得![]()
所以四面體
的體積![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保證食品的安全衛(wèi)生,食品監(jiān)督管理部門對(duì)某食品廠生產(chǎn)甲、乙兩種食品進(jìn)行了檢測(cè)調(diào)研,檢測(cè)某種有害微量元素的含量,隨機(jī)在兩種食品中各抽取了10個(gè)批次的食品,每個(gè)批次各隨機(jī)地抽取了一件,下表是測(cè)量數(shù)據(jù)的莖葉圖(單位:毫克).規(guī)定:當(dāng)食品中的有害微量元素的含量在
時(shí)為一等品,在
為二等品,20以上為劣質(zhì)品.
![]()
(1)用分層抽樣的方法在兩組數(shù)據(jù)中各抽取5個(gè)數(shù)據(jù),再分別從這5個(gè)數(shù)據(jù)中各選取2個(gè),求抽到食品甲包含劣質(zhì)品的概率和抽到食品乙全是一等品的概率;
(2)在概率和統(tǒng)計(jì)學(xué)中,數(shù)學(xué)期望(或均值)是基本的統(tǒng)計(jì)概念,它反映隨機(jī)變量取值的平均水平.變量的一切可能的取值
與對(duì)應(yīng)的概率
乘積之和稱為該變量的數(shù)學(xué)期望,記為
.
參考公式:變量
的取值為
,
對(duì)應(yīng)取值的概率
,可理解為數(shù)據(jù)
出現(xiàn)的頻率
,
.
①每生產(chǎn)一件一等品盈利50元,二等品盈利20元,劣質(zhì)品虧損20元,根據(jù)上表統(tǒng)計(jì)得到甲、乙兩種食品為一等品、二等品、劣質(zhì)品的頻率,分別估計(jì)這兩種食品為一等品、 二等品、劣質(zhì)品的概率,若分別從甲、乙食品中各抽取1件,求這兩件食品各自能給該廠 帶來的盈利期望
.
②若生產(chǎn)食品甲初期需要一次性投入10萬元,生產(chǎn)食品乙初期需要一次性投人16 萬元,但是以目前企業(yè)的狀況,甲乙兩條生產(chǎn)線只能投資其中一條.如果你是該食品廠負(fù)責(zé)人,以一年為期限,盈利為參照,請(qǐng)給出合理的投資方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),過原點(diǎn)的兩條直線
分別與曲線
交于異于原點(diǎn)的
、
兩點(diǎn),且
,其中
的傾斜角為
.以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求
和
的極坐標(biāo)方程;
(2)求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
的一個(gè)焦點(diǎn)與拋物線y2=-4x的焦點(diǎn)相同,且橢圓C上一點(diǎn)與橢圓C的左,右焦點(diǎn)F1,F2構(gòu)成的三角形的周長(zhǎng)為
.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m(k,m∈R)與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),△AOB的重心G滿足:
,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是
的中點(diǎn).
![]()
(1)設(shè)P是
上的一點(diǎn),且AP⊥BE,求∠CBP的大小;
(2)當(dāng)AB=3,AD=2時(shí),求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點(diǎn).
![]()
(1)證明:MN∥平面C1DE;
(2)求點(diǎn)C到平面C1DE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)對(duì)顧客實(shí)行購(gòu)物優(yōu)惠活動(dòng)規(guī)定,一次購(gòu)物付款總額:
(1)如果標(biāo)價(jià)總額不超過200元,則不給予優(yōu)惠;
(2)如果標(biāo)價(jià)總額超過200元但不超過500元,則按標(biāo)價(jià)總額給予9折優(yōu)惠;
(3)如果標(biāo)價(jià)總額超過500元,其500元內(nèi)的按第(2)條給予優(yōu)惠,超過500元的部分給予8折優(yōu)惠.
某人兩次去購(gòu)物,分別付款180元和423元,假設(shè)他一次性購(gòu)買上述兩次同樣的商品,則應(yīng)付款( )
A.550元B.560元C.570元D.580元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>
的奇函數(shù)
的導(dǎo)函數(shù)為
,當(dāng)
時(shí),
,若
,
,
,則
,
,
的大小關(guān)系正確的是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
是實(shí)常數(shù).
(1)當(dāng)
時(shí),判斷函數(shù)
的奇偶性,并給出證明;
(2)若
是奇函數(shù),不等式
有解,求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com