【題目】設正整數m,n滿足
,
,
,
,…,
為集各
的n元子集,且
;
(1)若
,滿足
;
(i)求證:
;
(ii)求滿足條件的集合
的個數;
(2)若
中至多有一個元素,求證:
.
科目:高中數學 來源: 題型:
【題目】已知函數
,
.
(1)若曲線
在
處的切線恰與曲線
相切,求a的值;
(2)不等式
對一切正實數x恒成立,求a的取值范圍;
(3)已知
,若函數
在
上有且只有一個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近一段時間來,由于受非洲豬瘟的影響,各地豬肉價格普遍上漲,生豬供不應求.各大養豬場正面臨巨大挑戰.目前各項針對性政策措施對于生豬整體產量恢復、激發養殖戶積極性的作用正在逐步顯現.現有甲、乙兩個規模一致的大型養豬場,均養有1萬頭豬,將其中重量(kg)在
內的豬分為三個成長階段如下表.
豬生長的三個階段
階段 | 幼年期 | 成長期 | 成年期 |
重量(Kg) |
|
|
|
根據以往經驗,兩個養豬場豬的體重X均近似服從正態分布
.由于我國有關部門加強對大型養豬場即將投放市場的成年期豬的監控力度,高度重視成年期豬的質量保證,為了養出健康的成年活豬,甲、乙兩養豬場引入兩種不同的防控及養殖模式.已知甲、乙兩個養豬場內一頭成年期豬能通過質檢合格的概率分別為
,
.
(1)試估算甲養豬場三個階段豬的數量;
(2)已知甲養豬場出售一頭成年期的豬,若為健康合格的豬,則可盈利600元,若為不合格的豬,則虧損100元;乙養豬場出售一頭成年期的豬,若為健康合格的豬,則可盈利500元,若為不合格的豬,則虧損200元.
(。┯Y為甲、乙養豬場各出售一頭成年期豬所得的總利潤,求隨機變量Y的分布列;
(ⅱ)假設兩養豬場均能把成年期豬售完,求兩養豬場的總利潤期望值.
(參考數據:若
,
,
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代有著輝煌的數學研究成果,其中《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《緝古算經》有著豐富多彩的內容,是了解我國古代數學的重要文獻.這5部專著中有3部產生于漢、魏、晉、南北朝時期.現擬從這5部專著中選擇2部作為學生課外興趣拓展參考書目,則所選2部專著中至少有一部不是漢、魏、晉、南北朝時期專著的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x|x﹣a|,a∈R.
(1)當f(2)+f(﹣2)>4時,求a的取值范圍;
(2)若a>0,x,y∈(﹣∞,a],不等式f(x)≤|y+3|+|y﹣a|恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,曲線
的參數方程為
(
,
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的坐標方程為
,若直線
與曲線
相切.
(1)求曲線
的極坐標方程;
(2)在曲線
上取兩點
、
于原點
構成
,且滿足
,求面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都為40%.現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數值的隨機數,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果.經隨機模擬產生了20組隨機數:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據此估計,該運動員三次投籃恰有兩次命中的概率為( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,直線
的傾斜角為
,且經過點
.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線
,從原點O作射線交
于點M,點N為射線OM上的點,滿足
,記點N的軌跡為曲線C.
(Ⅰ)求出直線
的參數方程和曲線C的直角坐標方程;
(Ⅱ)設直線
與曲線C交于P,Q兩點,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com