【題目】已知
是公差不為零的等差數(shù)列,滿足
,且
、
、
成等比數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)數(shù)列
滿足
,求數(shù)列
的前
項(xiàng)和
.
【答案】(1)
;(2)![]()
【解析】試題分析:(1)設(shè)等差數(shù)列
的公差為
,由a3=7,且
、
、
成等比數(shù)列.可得
,解之得即可得出數(shù)列
的通項(xiàng)公式;
2)由(1)得
,則
,由裂項(xiàng)相消法可求數(shù)列
的前
項(xiàng)和
.
試題解析:(1)設(shè)數(shù)列
的公差為
,且
由題意得
,
即
,解得
,
所以數(shù)列
的通項(xiàng)公式
.
(2)由(1)得![]()
,
![]()
.
【題型】解答題
【結(jié)束】
18
【題目】四棱錐
的底面
為直角梯形,
,
,
,
為正三角形.
![]()
(1)點(diǎn)
為棱
上一點(diǎn),若
平面
,
,求實(shí)數(shù)
的值;
(2)求點(diǎn)B到平面SAD的距離.
【答案】(1)
;(2)![]()
【解析】試題分析:(1)由
平面
,可證
,進(jìn)而證得四邊形
為平行四邊形,根據(jù)
,可得
;
(2)利用等體積法
可求點(diǎn)
到平面
的距離.
試題解析:((1)因?yàn)?/span>
平面SDM,
![]()
平面ABCD,
平面SDM
平面ABCD=DM,
所以
,
因?yàn)?/span>
,所以四邊形BCDM為平行四邊形,又
,所以M為AB的中點(diǎn).
因?yàn)?/span>
,
.
![]()
(2)因?yàn)?/span>
,
,
所以
平面
,
又因?yàn)?/span>
平面
,
所以平面
平面
,
平面
平面
,
在平面
內(nèi)過(guò)點(diǎn)
作
直線
于點(diǎn)
,則
平面
,
在
和
中,
因?yàn)?/span>
,所以
,
又由題知
,
所以
,
由已知求得
,所以
,
連接BD,則
,
又求得
的面積為
,
所以由
點(diǎn)B 到平面
的距離為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢問(wèn)100名性別不同的大學(xué)生是否愛好踢毽子,得到如下的列聯(lián)表:
![]()
隨機(jī)變量
經(jīng)計(jì)算,統(tǒng)計(jì)量K2的觀測(cè)值k0≈4.762,參照附表,得到的正確結(jié)論是( )
A. 在犯錯(cuò)誤的概率不超過(guò)5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過(guò)5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C. 有97.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 有97.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)的和記為Sn.如果a4=-12,a8=-4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Sn的最小值及其相應(yīng)的n的值;
(3)從數(shù)列{an}中依次取出a1,a2,a4,a8,…,
,…,構(gòu)成一個(gè)新的數(shù)列{bn},求{bn}的前n項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,tanA=
,tanB=
.
(1)求C的大小;
(2)若△ABC的最小邊長(zhǎng)為
,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:
+
=1(a>b>0)經(jīng)過(guò)點(diǎn)(1,
),且焦距為2
.
(1)求橢圓C方程;
(2)橢圓C的左,右焦點(diǎn)分別為F1,F2,過(guò)點(diǎn)F2的直線l與橢圓C交于A,B兩點(diǎn),求△F2AB面積S的最大值并求出相應(yīng)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
是定義在
上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為
,且有
,則不等式
的解集為
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年初,新冠肺炎疫情襲擊全國(guó),對(duì)人民生命安全和生產(chǎn)生活造成嚴(yán)重影響.在黨和政府強(qiáng)有力的抗疫領(lǐng)導(dǎo)下,我國(guó)控制住疫情后,一方面防止境外疫情輸入,另一方面逐步復(fù)工復(fù)產(chǎn),減輕經(jīng)濟(jì)下降對(duì)企業(yè)和民眾帶來(lái)的損失.為降低疫情影響,某廠家擬在2020年舉行某產(chǎn)品的促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)
萬(wàn)件與年促銷費(fèi)用
萬(wàn)元(
)滿足
(
為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是2萬(wàn)件.已知生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元,每生產(chǎn)一萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(此處每件產(chǎn)品年平均成本按
元來(lái)計(jì)算)
(1)將2020年該產(chǎn)品的利潤(rùn)
萬(wàn)元表示為年促銷費(fèi)用
萬(wàn)元的函數(shù);
(2)該廠家2020年的促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)各項(xiàng)都是正數(shù)的等比數(shù)列{
},Sn為前n項(xiàng)和,且S10=10,S30=70,那么S40=______
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量
,
,函數(shù)
.
(1)求
的最小正周期及
圖象的對(duì)稱軸方程;
(2)若先將
的圖象上每個(gè)點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,然后再向左平移
個(gè)單位長(zhǎng)度得到函數(shù)
的圖象,求函數(shù)
在區(qū)間
內(nèi)的所有零點(diǎn)之和.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com