【題目】如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1為菱形,D為AB的中點(diǎn),
為等腰三角形,∠ACB=
,∠ABB1=
,且AB=B1C.
![]()
(1)證明:CD⊥平面ABB1A1 ;
(2)求CD與平面A1BC所成角的正弦值.
【答案】(1)證明見解析(2)![]()
【解析】
(1)推導(dǎo)出CD⊥AB,連結(jié)B1D,設(shè)AB=2a,推導(dǎo)出CD⊥B1D,由此能證明CD⊥平面ABB1A1;(2)以D為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系
,利用向量法能求出CD與平面
所成角的正弦值.
證明:因?yàn)?/span>D為AB的中點(diǎn),
,所以
.
連接
,設(shè)
,因?yàn)樗倪呅?/span>
為菱形,D為AB的中點(diǎn),
,
所以
,
又
為等腰直角三角形,
,所以
,
所以
,則
D.
因?yàn)?/span>
,所以
平面![]()
(2)以D為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系
,
![]()
設(shè)
,則
0,
,
,
,
0,
,
所以![]()
,![]()
,
設(shè)平面
的法向量為![]()
y,
,則
,
即
,令
,得![]()
.
設(shè)CD與平面
所成角為
,因?yàn)?/span>![]()
,
所以![]()
所以
,
即CD與平面
所成角的正弦值為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知傾斜角為
的直線經(jīng)過拋物線
的焦點(diǎn)
,與拋物線
相交于
、
兩點(diǎn),且
.
(1)求拋物線
的方程;
(2)設(shè)
為拋物線
上任意一點(diǎn)(異于頂點(diǎn)),過
做傾斜角互補(bǔ)的兩條直線
、
,交拋物線
于另兩點(diǎn)
、
,記拋物線
在點(diǎn)
的切線
的傾斜角為
,直線
的傾斜角為
,求證:
與
互補(bǔ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
,
且
,點(diǎn)
在橢圓內(nèi)部,點(diǎn)
在橢圓上,則以下說法正確的是( )
A.
的最小值為![]()
B.橢圓
的短軸長可能為2
C.橢圓
的離心率的取值范圍為![]()
D.若
,則橢圓
的長軸長為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線
交于A,B兩點(diǎn),且
,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】體溫是人體健康狀況的直接反應(yīng),一般認(rèn)為成年人腋下溫度T(單位:
)平均在
之間即為正常體溫,超過
即為發(fā)熱.發(fā)熱狀態(tài)下,不同體溫可分成以下三種發(fā)熱類型:低熱:
;高熱:
;超高熱(有生命危險(xiǎn)):
.某位患者因患肺炎發(fā)熱,于12日至26日住院治療.醫(yī)生根據(jù)病情變化,從14日開始,以3天為一個療程,分別用三種不同的抗生素為該患者進(jìn)行消炎退熱.住院期間,患者每天上午8:00服藥,護(hù)士每天下午16:00為患者測量腋下體溫記錄如下:
抗生素使用情況 | 沒有使用 | 使用“抗生素A”療 | 使用“抗生素B”治療 | |||||
日期 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 |
體溫( | 38.7 | 39.4 | 39.7 | 40.1 | 39.9 | 39.2 | 38.9 | 39.0 |
抗生素使用情況 | 使用“抗生素C”治療 | 沒有使用 | |||||
日期 | 20日 | 21日 | 22日 | 23日 | 24日 | 25日 | 26日 |
體溫( | 38.4 | 38.0 | 37.6 | 37.1 | 36.8 | 36.6 | 36.3 |
(I)請你計(jì)算住院期間該患者體溫不低于
的各天體溫平均值;
(II)在19日—23日期間,醫(yī)生會隨機(jī)選取3天在測量體溫的同時為該患者進(jìn)行某一特殊項(xiàng)目“a項(xiàng)目”的檢查,記X為高熱體溫下做“a項(xiàng)目”檢查的天數(shù),試求X的分布列與數(shù)學(xué)期望;
(III)抗生素治療一般在服藥后2-8個小時就能出現(xiàn)血液濃度的高峰,開始?xì)缂?xì)菌,達(dá)到消炎退熱效果.假設(shè)三種抗生素治療效果相互獨(dú)立,請依據(jù)表中數(shù)據(jù),判斷哪種抗生素治療效果最佳,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為徹底打贏脫貧攻堅(jiān)戰(zhàn),2020年春,某市政府投入資金幫扶某農(nóng)戶種植蔬菜大棚脫貧致富,若該農(nóng)戶計(jì)劃種植冬瓜和茄子,總面積不超過15畝,幫扶資金不超過4萬元,冬瓜每畝產(chǎn)量10 000斤,成本2000元,每斤售價(jià)0.5元,茄子每畝產(chǎn)量5000斤,成本3000元,每斤售價(jià)1.4元,則該農(nóng)戶種植冬瓜和茄子利潤的最大值為( )
A.4萬元B.5.5萬元C.6.5萬元D.10萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計(jì)算圓的周長,面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當(dāng)時世界上圓周率計(jì)算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時,某同學(xué)利用計(jì)算機(jī)隨機(jī)模擬法向圓內(nèi)隨機(jī)投擲點(diǎn),計(jì)算得出該點(diǎn)落在正六邊形內(nèi)的頻率為0.8269,那么通過該實(shí)驗(yàn)計(jì)算出來的圓周率近似值為(參考數(shù)據(jù):
)
![]()
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)設(shè)
為曲線
上位于第一,二象限的兩個動點(diǎn),且
,射線
交曲線
分別于
,求
面積的最小值,并求此時四邊形
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓
(
)的離心率是
,點(diǎn)
在短軸
上,且
。
(1)球橢圓
的方程;
(2)設(shè)
為坐標(biāo)原點(diǎn),過點(diǎn)
的動直線與橢圓交于
兩點(diǎn)。是否存在常數(shù)
,使得
為定值?若存在,求
的值;若不存在,請說明理由。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com