【題目】在正方體ABCD﹣A1B1C1D1中,當(dāng)點(diǎn)E在B1D1(與B1,D1不重合)上運(yùn)動(dòng)時(shí),總有:
![]()
①AE∥BC1; ②平面AA1E⊥平面BB1D1D;
③AE∥平面BC1D; ④A1C⊥AE.
以上四個(gè)推斷中正確的是( )
A.①②B.①④C.②④D.③④
【答案】D
【解析】
①考慮
與
的位置關(guān)系,得到
的位置關(guān)系,可判斷是否正確;
②根據(jù)面面垂直的性質(zhì)定理判斷是否正確;
③利用面面平行的性質(zhì)定理判斷是否正確;
④根據(jù)線面垂直的定義判斷是否正確.
①如下圖,記
上任意兩個(gè)不同位置為
,若
,則
,又因?yàn)?/span>
,所以
不成立,所以
不恒成立;
![]()
②如下圖,連接
,作
平面
交
于
,
若平面
⊥平面
,且平面
平面
,
,
所以
⊥平面
,又因?yàn)?/span>
是運(yùn)動(dòng)的,所以
⊥平面
不恒成立,
所以平面
⊥平面
不恒成立;
![]()
③如下圖,連接
,
因?yàn)?/span>
且
,
所以平面
平面
,又因?yàn)?/span>
平面
,所以
平面
;
![]()
④因?yàn)?/span>
,
,
,所以
平面
,所以
,
同理可知:
,
又因?yàn)?/span>
,所以
平面
,
因?yàn)?/span>
平面
,所以
.
![]()
所以正確的序號為:③④.
故選:D.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市交通部門為了對該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照
,
,
,
分成5組,制成如圖所示頻率分直方圖.
![]()
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)已知滿意度評分值在
內(nèi)的男生數(shù)與女生數(shù)的比為
,若在滿意度評分值為
的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)若不等式
解集為
,求實(shí)數(shù)
的值;
(2)在(1)的條件下,若不等式
解集非空,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中,將底面為直角三角形且側(cè)棱垂直于底面的三棱柱稱之為塹堵;將底面為矩形且一側(cè)棱垂直于底面的四棱錐稱之為陽馬;將四個(gè)面均為直角三角形的四面體稱之為鱉臑[biē nào].某學(xué)?茖W(xué)小組為了節(jié)約材料,擬依托校園內(nèi)垂直的兩面墻和地面搭建一個(gè)塹堵形的封閉的實(shí)驗(yàn)室
,
是邊長為2的正方形.
![]()
(1)若
是等腰三角形,在圖2的網(wǎng)格中(每個(gè)小方格都是邊長為1的正方形)畫出塹堵的三視圖;
(2)若
,
在
上,證明:
,并回答四面體
是否為鱉臑,若是,寫出其每個(gè)面的直角(只需寫出結(jié)論);若不是,請說明理由;
(3)當(dāng)陽馬
的體積最大時(shí),求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,
,
分別是橢圓
的左,右焦點(diǎn),點(diǎn)P是橢圓E上一點(diǎn),滿足
軸,
.
![]()
(1)求橢圓E的離心率;
(2)過點(diǎn)
的直線l與橢圓E交于兩點(diǎn)A,B,若在橢圓B上存在點(diǎn)Q,使得四邊形OAQB為平行四邊形,求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有以下命題:①如果向量
與任何向量不能構(gòu)成空間向量的一組基底,那么
的關(guān)系是不共線;②
為空間四點(diǎn),且向量
不構(gòu)成空間的一個(gè)基底,那么點(diǎn)
一定共面;③已知向量
是空間的一個(gè)基底,則向量
,也是空間的一個(gè)基底。其中正確的命題是( )
A. ①②B. ①③C. ②③D. ①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱錐P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=
.
![]()
(1)求證:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,其中
為正實(shí)數(shù).
(Ⅰ)若
是函數(shù)
的極值點(diǎn),討論函數(shù)
的單調(diào)性;
(Ⅱ)若
在
上無最小值,且
在
上是單調(diào)增函數(shù),求
的取值范圍,并由此判斷曲線
與曲線
在
交點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)若
與
交于
兩點(diǎn),點(diǎn)
的極坐標(biāo)為
,求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com