題目列表(包括答案和解析)
設橢圓
的左、右頂點分別為
,點
在橢圓上且異于
兩點,
為坐標原點.
(Ⅰ)若直線
與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若
,證明直線
的斜率
滿足![]()
【解析】(1)解:設點P的坐標為
.由題意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以橢圓的離心率![]()
(2)證明:(方法一)
依題意,直線OP的方程為
,設點P的坐標為
.
由條件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依題意,直線OP的方程為
,設點P的坐標為
.
由P在橢圓上,有![]()
因為
,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
已知
,函數![]()
(1)當
時,求函數
在點(1,
)的切線方程;
(2)求函數
在[-1,1]的極值;
(3)若在
上至少存在一個實數x0,使
>g(xo)成立,求正實數
的取值范圍。
【解析】本試題中導數在研究函數中的運用。(1)中
,那么當
時,
又
所以函數
在點(1,
)的切線方程為
;(2)中令
有 ![]()
![]()
對a分類討論
,和
得到極值。(3)中,設
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 當
時,
又
∴ 函數
在點(1,
)的切線方程為
--------4分
(Ⅱ)令
有 ![]()
![]()
①
當
即
時
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
極大值 |
|
極小值 |
|
故
的極大值是
,極小值是![]()
②
當
即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述
時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設
,![]()
對
求導,得![]()
∵
,
![]()
∴
在區間
上為增函數,則![]()
依題意,只需
,即
解得
或
(舍去)
則正實數
的取值范圍是(![]()
,
)
現有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個游戲,擲出點數為1或2的人去參加甲游戲,擲出點數大于2的人去參加乙游戲.
(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;
(Ⅱ)求這4個人中去參加甲游戲的人數大于去參加乙游戲的人數的概率;
(Ⅲ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數,記
,求隨機變量
的分布列與數學期望
.
【解析】依題意,這4個人中,每個人去參加甲游戲的概率為
,去參加乙游戲的概率為
.
設“這4個人中恰有i人去參加甲游戲”為事件![]()
![]()
則
.
(1)這4個人中恰有2人去參加甲游戲的概率![]()
(2)設“這4個人中去參加甲游戲的人數大于去參加乙游戲的人數”為事件B,則
.由于
互斥,故![]()
所以,這個人中去參加甲游戲的人數大于去參加乙游戲的人數的概率為
.
(3)
的所有可能取值為0,2,4.由于
互斥,
互斥,故![]()
![]()
所以
的分布列是
|
|
0 |
2 |
4 |
|
P |
|
|
|
隨機變量
的數學期望
.
已知函數
,
.
(Ⅰ)若函數
依次在
處取到極值.求
的取值范圍;
(Ⅱ)若存在實數
,使對任意的
,不等式
恒成立.求正整數
的最大值.
【解析】第一問中利用導數在在
處取到極值點可知導數為零可以解得方程有三個不同的實數根來分析求解。
第二問中,利用存在實數
,使對任意的
,不等式
恒成立轉化為
,恒成立,分離參數法求解得到范圍。
解:(1)
①
![]()
(2)不等式
,即
,即
.
轉化為存在實數
,使對任意的
,不等式
恒成立.
即不等式
在
上恒成立.
即不等式
在
上恒成立.
設
,則.![]()
設
,則
,因為
,有
.
故
在區間
上是減函數。又![]()
故存在
,使得
.
當
時,有
,當
時,有
.
從而
在區間
上遞增,在區間
上遞減.
又
[來源:]
![]()
所以當
時,恒有
;當
時,恒有![]()
;
故使命題成立的正整數m的最大值為5
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com