題目列表(包括答案和解析)
如圖所示的長方體
中,底面
是邊長為
的正方形,
為
與
的交點,
,
是線段
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求二面角
的大小.
【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用
,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得證明
(3)因為∴
為面
的法向量.∵
,
,
∴
為平面
的法向量.∴利用法向量的夾角公式,
,
∴
與
的夾角為
,即二面角
的大小為
.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標系.連接
,則點
、
,
![]()
∴
,又點
,
,∴![]()
∴
,且
與
不共線,∴
.
又
平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵
,![]()
∴
,
,即
,
,
又
,∴
平面
. ………8分
(Ⅲ)∵
,
,∴
平面
,
∴
為面
的法向量.∵
,
,
∴
為平面
的法向量.∴
,
∴
與
的夾角為
,即二面角
的大小為![]()
已知
是等差數列,其前n項和為Sn,
是等比數列,且
,
.
(Ⅰ)求數列
與
的通項公式;
(Ⅱ)記
,
,證明
(
).
【解析】(1)設等差數列
的公差為d,等比數列
的公比為q.
由
,得
,
,
.
由條件,得方程組
,解得![]()
所以
,
,
.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
![]()
![]()
![]()
而![]()
故
,![]()
(方法二:數學歸納法)
① 當n=1時,
,
,故等式成立.
② 假設當n=k時等式成立,即
,則當n=k+1時,有:
![]()
![]()
![]()
![]()
![]()
![]()
即
,因此n=k+1時等式也成立
由①和②,可知對任意
,
成立.
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數量積的運算,以及兩角和差的三角函數關系式的運用。
(1)問中∵
,∴
,…………………1分
∵
,得到三角關系是
,結合
,解得。
(2)由
,解得
,
,結合二倍角公式
,和
,代入到兩角和的三角函數關系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②聯立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
將①代入②中,可得
③ …………………4分
將③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,從而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
綜上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
綜上可得
…………………12分
(若用
,又∵
∴
,
雙曲線
的一條漸近線為
,由方程組
,消去y,得
有唯一解,所以△=
,
所以
,
,故選D. w.w.w.k.s.5.u.c.o.m
![]()
答案:D.
【命題立意】:本題考查了雙曲線的漸近線的方程和離心率的概念,以及直線與拋物線的位置關系,只有一個公共點,則解方程組有唯一解.本題較好地考查了基本概念基本方法和基本技能.
設橢圓
的左、右頂點分別為
,點
在橢圓上且異于
兩點,
為坐標原點.
(Ⅰ)若直線
與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若
,證明直線
的斜率
滿足![]()
【解析】(1)解:設點P的坐標為
.由題意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以橢圓的離心率![]()
(2)證明:(方法一)
依題意,直線OP的方程為
,設點P的坐標為
.
由條件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依題意,直線OP的方程為
,設點P的坐標為
.
由P在橢圓上,有![]()
因為
,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com