【題目】已知F1、F2是橢圓
的左、右焦點,A是橢圓上位于第一象限內的一點,點B也在橢圓上,且滿足
(O是坐標原點),
若橢圓的離心率等于![]()
(1)求直線AB的方程;
(2)若三角形ABF2的面積等于
,求橢圓的方程.
科目:高中數學 來源: 題型:
【題目】某種大型醫療檢查機器生產商,對一次性購買2臺機器的客戶,推出兩種超過質保期后兩年內的延保維修優惠方案:方案一:交納延保金7000元,在延保的兩年內可免費維修2次,超過2次每次收取維修費2000元;方案二:交納延保金10000元,在延保的兩年內可免費維修4次,超過4次每次收取維修費1000元.某醫院準備一次性購買2臺這種機器。現需決策在購買機器時應購買哪種延保方案,為此搜集并整理了50臺這種機器超過質保期后延保兩年內維修的次數,得下表:
維修次數 | 0 | 1 | 2 | 3 |
臺數 | 5 | 10 | 20 | 15 |
以這50臺機器維修次數的頻率代替1臺機器維修次數發生的概率,記X表示這2臺機器超過質保期后延保的兩年內共需維修的次數。
(1)求X的分布列;
(2)以所需延保金及維修費用的期望值為決策依據,醫院選擇哪種延保方案更合算?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在平面直角坐標系
中,直線
的參數方程為
(
為參數,
),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)若
,求直線
的普通方程及曲線
的直角坐標方程;
(Ⅱ)若直線
與曲線
有兩個不同的交點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐
中,四邊形
是直角梯形,
,
,
底面
,
,
,
是
的中點.
![]()
(1)求證:平面
平面
;
(2)若二面角
的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
已知拋物線
的焦點為
,
為
上異于原點的任意一點,過點
的直線
交
于另一點
,交
軸的正半軸于點
,且有
.當點
的橫坐標為
時,
為正三角形.
(Ⅰ)求
的方程;
(Ⅱ)若直線
,且
和
有且只有一個公共點
,
(ⅰ)證明直線
過定點,并求出定點坐標;
(ⅱ)
的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,點
是直線
上的動點,
為定點,點
為
的中點,動點
滿足
,且
,設點
的軌跡為曲線
.
(1)求曲線
的方程;
(2)過點
的直線交曲線
于
,
兩點,
為曲線
上異于
,
的任意一點,直線
,
分別交直線
于
,
兩點.問
是否為定值?若是,求
的值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦點坐標為
,
,過
垂直于長軸的直線交橢圓于
、
兩點,且
.
![]()
(Ⅰ)求橢圓的方程;
(Ⅱ)過
的直線
與橢圓交于不同的兩點
、
,則
的內切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com