6. 如圖,已知△ABC≌△A'BC',A'C'//BC,∠C=20°,求∠ABA'的度數.
答案:20°
解析:∵△ABC≌△A'BC',∴∠C=∠C'=20°.
∵A'C'//BC,∴∠C'CB=∠C'=20°(內錯角相等).
∵△ABC≌△A'BC',∴∠ABC=∠A'BC'.
∠ABA'=∠A'BC-∠ABC=∠A'BC-∠A'BC'=∠C'CB=20°.
7. 如圖,A,D,E三點在同一條直線上,且△BAD≌△ACE,試說明:
(1)BD=DE+CE;
(2)△ABD滿足什么條件時,BD//CE?
答案:(1)∵△BAD≌△ACE,∴BD=AE,AD=CE.
∵A,D,E共線,∴AE=AD+DE=CE+DE.
∴BD=DE+CE.
(2)當△ABD是直角三角形且∠ADB=90°時,BD//CE.
解析:要使BD//CE,需∠BDE=∠E(內錯角相等).
∵△BAD≌△ACE,∴∠ADB=∠E.
∠ADB+∠BDE=180°(平角定義),若∠ADB=∠BDE,則∠ADB=∠BDE=90°.
即∠ADB=90°時,BD//CE.