中學生世界九年級數學第一學期上滬教版54制
注:當前書本只展示部分頁碼答案,查看完整答案請下載作業精靈APP。練習冊中學生世界九年級數學第一學期上滬教版54制答案主要是用來給同學們做完題方便對答案用的,請勿直接抄襲。
1. 如圖,小正方形的邊長均為1,則下列圖中的三角形(陰影部分)與△ABC相似的是(
B
)
答案:B
解析:△ABC的三邊長分別為$\sqrt{2}$,2,$\sqrt{10}$,三邊之比為1:$\sqrt{2}$:$\sqrt{5}$. 選項B中三角形三邊長為1,$\sqrt{2}$,$\sqrt{5}$,比例相同,故選B.
2. 如圖,△ABC中,∠ACB=90°,∠A=30°,將△ABC繞點C按順時針方向旋轉得到△A'B'C,點B'在AB上,A'B'交AC于點F,則圖中與△AB'F相似的三角形有(不再添加其他線段)(
D
)
(A)1個;(B)2個;(C)3個;(D)4個.
答案:D
解析:旋轉后CB=CB',∠B=60°,∴△CBB'為等邊三角形,∠B'CB=60°,∠ACB'=30°,∠A'=30°,∠A'FC=60°,∠B'FA=120°. 與△AB'F相似的三角形有△ABC,△A'B'C,△AFB',△CFB',共4個,故選D.
3. 如圖,在等邊三角形ABC中,AE=DE=DC,FE//MD//BC,FD的延長線交BC的延長線于點N,則$\frac{EF}{BN}$的值為(
C
)
(A)$\frac{1}{2}$;(B)$\frac{1}{3}$;(C)$\frac{1}{4}$;(D)$\frac{1}{5}$.
答案:C
解析:設AE=DE=DC=a,則AC=3a,AB=BC=3a.
∵FE//BC,∴$\frac{EF}{BC}=\frac{AE}{AC}=\frac{1}{3}$,EF=a.
∵MD//BC,∴$\frac{MD}{BC}=\frac{AD}{AC}=\frac{2}{3}$,MD=2a,FD=MD - EF=2a - a=a.
∵FE//BN,∴△FED∽△NCD,$\frac{FD}{ND}=\frac{ED}{CD}=1$,∴ND=FD=a,BN=BC + CN=3a + a=4a,$\frac{EF}{BN}=\frac{a}{4a}=\frac{1}{4}$,故選C.
4. 根據你對相似的理解,下列命題不正確的是(
C
)
(A)三邊之比為2:3:4的兩個三角形一定相似;
(B)三內角之比為2:3:4的兩個三角形一定相似;
(C)兩鄰邊之比為2:3的兩個直角三角形一定相似;
(D)兩鄰邊之比為2:3的兩個矩形一定相似.
答案:C
解析:兩鄰邊之比為2:3的兩個直角三角形,直角邊與斜邊的比例可能不同,不一定相似,故選C.