人教金學典同步解析與測評八年級數學上冊人教版
注:當前書本只展示部分頁碼答案,查看完整答案請下載作業精靈APP。練習冊人教金學典同步解析與測評八年級數學上冊人教版答案主要是用來給同學們做完題方便對答案用的,請勿直接抄襲。
2. 如圖,在等邊三角形ABC中,D是AC的中點,E是BC延長線上一點,且CE = CD,F是BE的中點,DF⊥BC,垂足為F. 求證:BF = CF.
答案:證明:連接BD. 因為\triangle ABC是等邊三角形,D是AC中點,所以BD平分∠ABC,∠ABC = 60°,則∠DBC=\frac{1}{2}∠ABC = 30°. 又因為CE = CD,所以∠E = ∠CDE,且∠ACB = ∠E+∠CDE = 60°,所以∠E=\frac{1}{2}∠ACB = 30°. 所以∠DBC = ∠E,所以BD = DE. 因為F是BE中點,DF⊥BC,根據等腰三角形三線合一,所以BF = CF.
3. 如圖,在四邊形ABCD中,AD = CB,AB = CD,E為AD上一點,且∠A = 60°,連接BD,CE,CE,相交于點F,CF//AB. (1)判斷\triangle DEF的形狀,并說明理由;(2)若AD = 16,CE = 24,求CF的長.
答案:(1)因為AD = CB,AB = CD,所以四邊形ABCD是平行四邊形,所以AB//CD. 又因為CF//AB,所以CF//CD. 因為∠A = 60°,四邊形ABCD是平行四邊形,所以∠ADC = ∠A = 60°. 因為AD = CB,AB = CD,所以\triangle ABD≌\triangle CDB(SSS),所以∠ADB = ∠CBD. 因為CF//AB,所以∠DFC = ∠ABD,所以∠DFC = ∠FDC = 60°,所以\triangle DEF是等邊三角形. (2)設CF = x,則DE = EF = DF = 16 - x. 因為CE = 24,所以CF + EF = 24,即x+(16 - x)=24(此方程錯誤,重新分析:過D作DG⊥CF于G,因為\triangle DEF是等邊三角形,∠DFC = 60°,設DE = EF = DF = y,則CF = 24 - y. 在Rt\triangle DFG中,∠FDG = 30°,FG=\frac{1}{2}y,DG=\frac{\sqrt{3}}{2}y. 因為四邊形ABCD是平行四邊形,AB//CF,AD = 16,所以CD = AB,AD//BC. 因為CF//AB,所以四邊形ABCF是平行四邊形,所以AB = CF = 24 - y,所以CD = 24 - y. 在Rt\triangle DCG中,根據勾股定理DG^{2}+CG^{2}=CD^{2},CG = CF - FG = 24 - y-\frac{1}{2}y=24-\frac{3}{2}y,(\frac{\sqrt{3}}{2}y)^{2}+(24-\frac{3}{2}y)^{2}=(24 - y)^{2},展開求解得y = 8,所以CF = 24 - 8 = 16.
4. 如圖,\triangle ABC是等腰三角形,AC = AB,設∠BAC = β. (1)如圖,點D在線段AB上,若∠ACD = 45°,求∠DCB的度數(用含β的代數式表示);(2)如圖(2),若AB = BD,過點B作BH⊥AD,垂足為H,BH=\frac{1}{2}BC,求證:∠BAC = 180° - 2∠ABD.
答案:(1)因為AC = AB,所以∠ACB = ∠ABC=\frac{1}{2}(180° - β)=90°-\frac{β}{2}. 又因為∠ACD = 45°,所以∠DCB = ∠ACB - ∠ACD=(90°-\frac{β}{2})- 45°=45°-\frac{β}{2}. (2)因為AB = BD,BH⊥AD,所以∠ABD = 2∠ABH. 因為BH=\frac{1}{2}BC,在Rt\triangle BHC中,sin∠ACB=\frac{BH}{BC}=\frac{1}{2},所以∠ACB = 30°. 因為AC = AB,所以∠ABC = ∠ACB = 30°. 設∠ABH = x,則∠ABD = 2x,在\triangle ABC中,∠BAC + ∠ABC+∠ACB = 180°,即∠BAC+30° + 30°=180°,且∠ABC = ∠ABH + ∠HBC,∠HBC = 30° - x. 又因為AC = AB,所以∠BAC = 180°-2∠ABC,而∠ABC = ∠ABH+(30° - ∠ABH)=30°,∠ABD = 2∠ABH,所以∠BAC = 180° - 2∠ABD.
5. 如圖,ABC的邊AB上一點P,過點P作PE⊥AC,垂足為E,Q為BC延長線上一點,Q為BC延長線上一點,連接PQ,交AC于點D,當PA = CQ時,(1)求證:DE為PQ的中點;(2)求DE的長.
答案:(1)過Q作QF⊥AC交AC的延長線于F. 因為PE⊥AC,QF⊥AC,所以∠AEP = ∠CFQ = 90°. 因為∠ADE = ∠QDF,PA = CQ,∠EAP = ∠FCQ(對頂角的余角相等),所以\triangle AEP≌\triangle CFQ(AAS),所以PE = QF,AE = CF. 又因為∠PED = ∠QFD = 90°,∠PDE = ∠QDF,PE = QF,所以\triangle PDE≌\triangle QDF(AAS),所以DE = DF,即DE為PQ的中點. (2)由于題目中未給出任何線段的長度數值,無法求出DE的具體長度.