新課程能力培養九年級數學北師大版
注:當前書本只展示部分頁碼答案,查看完整答案請下載作業精靈APP。練習冊新課程能力培養九年級數學北師大版答案主要是用來給同學們做完題方便對答案用的,請勿直接抄襲。
三、解答題(第14-16題各7分,第17-21題各8分,共61分)
14. 如圖,四邊形$ABCD$是菱形,對角線$AC$,$BD$相交于點$O$,$DH\perp AB$于點$H$.連接$OH$.求證:$\angle DHO=\angle DCO$.
答案:證明:四邊形$ABCD$是菱形,$OD = OB$,$AB// CD$,$\angle DCO=\angle OAB$.$DH\perp AB$,$\triangle DHB$是直角三角形,$OH=\frac {1}{2}BD = OB$,$\angle OHB=\angle OBH$.$AB// CD$,$\angle OBH=\angle ODC$,$\angle DHO+\angle OHB = 90^{\circ}$,$\angle DCO+\angle ODC = 90^{\circ}$,所以$\angle DHO=\angle DCO$.
15. 如圖,四邊形$ABCD$是正方形,對角線$AC$,$BD$相交于點$O$,四邊形$AEFC$是菱形,$EH\perp AC$,垂足為點$H$.求證:$EH=\frac {1}{2}FC$.
答案:證明:正方形$ABCD$,$AC\perp BD$,$OA = OC=\frac {1}{2}AC$,$\angle AOB = 90^{\circ}$.菱形$AEFC$,$AC = FC$,$EH\perp AC$,$EH = OB$(菱形高等于$OB$),$OB=\frac {1}{2}BD=\frac {1}{2}AC=\frac {1}{2}FC$,所以$EH=\frac {1}{2}FC$.
16. 如圖,在矩形$ABCD$中,過對角線$AC$的中點$O$作$EF\perp AC$,分別與$AB$,$DC$交于點$E$,$F$,點$G$為$AE$的中點,若$\angle AOG = 30^{\circ}$,求證:$DC = 3OG$.
答案:證明:連接$CE$,$O$是$AC$中點,$EF\perp AC$,$EF$垂直平分$AC$,$AE = CE$.$G$是$AE$中點,$OG=\frac {1}{2}AE$(直角三角形斜邊上中線).設$OG = x$,則$AE = 2x$,$\angle AOG = 30^{\circ}$,$\angle OAG = 60^{\circ}$,$\triangle AOE$是等邊三角形,$AE = AO$,$AC = 2AO = 2AE = 4x$.在$Rt\triangle ABC$中,$\angle BAC = 60^{\circ}$,$AB = DC=\frac {1}{2}AC = 2x$,$DC = 2x = 2OG$(原解析有誤,修正)
$EF\perp AC$,$O$為$AC$中點,$AE = CE$.$G$為$AE$中點,在$Rt\triangle AOE$中,$OG = AG = GE$,$\angle AOG = 30^{\circ}$,$\angle OAG = 30^{\circ}$,設$OG = x$,則$AG = x$,$AE = 2x$,$AO = AE\cos30^{\circ}=2x×\frac {\sqrt {3}}{2}=\sqrt {3}x$,$AC = 2AO = 2\sqrt {3}x$,$DC = AB = AC\cos30^{\circ}=2\sqrt {3}x×\frac {\sqrt {3}}{2}=3x$,所以$DC = 3OG$.
17. 如圖,在$□ ABCD$中,對角線$AC$,$BD$交于點$O$,$E$是$BD$延長線上的點,且$\triangle ACE$是等邊三角形.
(1)求證:四邊形$ABCD$是菱形.
(2)若$\angle AED = 2\angle EAD$,求證:四邊形$ABCD$是正方形.
答案:(1)證明:$□ ABCD$,$OA = OC$.$\triangle ACE$等邊,$EO\perp AC$(三線合一),$BD\perp AC$,所以$□ ABCD$是菱形.
(2)證明:$\triangle ACE$等邊,$\angle AEC = 60^{\circ}$,$EO\perp AC$,$\angle AEO = 30^{\circ}$.$\angle AED = 2\angle EAD$,設$\angle EAD = x$,則$\angle AED = 2x$,$x + 2x + 30^{\circ}=180^{\circ}$,$x = 50^{\circ}$(原解析有誤,修正)
$\angle AEO = 30^{\circ}$,$\angle AED = 2\angle EAD$,設$\angle EAD = x$,則$\angle AED = 2x$,在$\triangle AED$中,$x + 2x + \angle ADE = 180^{\circ}$.$AD// BC$,$\angle ADE = \angle OBC$,菱形$ABCD$,$OB = OD$,$\angle OBC = \angle OCB$,$\angle AED = 2x = \angle OEC + \angle CED = 30^{\circ}+\angle CED$,解得$x = 15^{\circ}$,$\angle AED = 30^{\circ}$,$\angle ADO = 45^{\circ}$,$\angle ADC = 90^{\circ}$,所以菱形$ABCD$是正方形.
18. 如圖,在四邊形$ABCD$中,$E$是$AB$上的一點,$\triangle ADE$和$\triangle BCE$都是等邊三角形,點$P$,$Q$,$M$,$N$分別為$AB$,$BC$,$CD$,$DA$的中點,試判斷四邊形$PQMN$為怎樣的四邊形,并證明你的結論.
菱形
證明:連接$AC$,$BD$.$P$,$Q$,$M$,$N$是中點,$PQ// AC$,$PQ=\frac {1}{2}AC$,$MN// AC$,$MN=\frac {1}{2}AC$,所以$PQ// MN$,$PQ = MN$,四邊形$PQMN$是平行四邊形.$\triangle ADE$和$\triangle BCE$等邊,$AE = DE$,$CE = BE$,$\angle AED = \angle CEB = 60^{\circ}$,$\angle AEC = \angle DEB$,$\triangle AEC\cong\triangle DEB$,$AC = BD$,$PQ=\frac {1}{2}AC=\frac {1}{2}BD = PN$,所以平行四邊形$PQMN$是菱形.
答案:菱形
證明:連接$AC$,$BD$.$P$,$Q$,$M$,$N$是中點,$PQ// AC$,$PQ=\frac {1}{2}AC$,$MN// AC$,$MN=\frac {1}{2}AC$,所以$PQ// MN$,$PQ = MN$,四邊形$PQMN$是平行四邊形.$\triangle ADE$和$\triangle BCE$等邊,$AE = DE$,$CE = BE$,$\angle AED = \angle CEB = 60^{\circ}$,$\angle AEC = \angle DEB$,$\triangle AEC\cong\triangle DEB$,$AC = BD$,$PQ=\frac {1}{2}AC=\frac {1}{2}BD = PN$,所以平行四邊形$PQMN$是菱形.